BT7: So sánh
2) \(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}\) và \(B=\dfrac{2006^{2005}+1}{2006^{2006}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2006^2005+1/2006^2006+1
B=2006^2006+1/2006^2007+1
Có : 2006A = 2006^2006+2006/2006^2006+1
= 1 + 2005/2006^2006+1 2006B
= 2006^2007+2006/2006^2007+1
= 1 + 2005/2006^2007+1
Vì : 2006^2006 < 2006^2007
=> 2006^2006+1 < 2006^2007+1
=> 2005/2006^2006+1 > 2005/2006^2007+1
=> 2016A > 2016B
=> A>B
Ta có:
\(A=\frac{2006^{2005}+1}{2006^{2006}+1}\)
\(\Rightarrow2006A=\frac{2006^{2006}+2006}{2006^{2006}+1}=\frac{\left(2006^{2006}+1\right)+2005}{2006^{2006}+1}=1+\frac{2005}{2006^{2006}+1}\)
Ta lại có:
\(B=\frac{2006^{2006}+1}{2006^{2007}+1}\)
\(\Rightarrow2006B=\frac{2006^{2007}+2006}{2006^{2007}+1}=\frac{\left(2006^{2007}+1\right)+2005}{2006^{2007}+1}=1+\frac{2005}{2006^{2007+1}}\)
Ta thấy:
\(\frac{2005}{2006^{2006}+1}>\frac{2005}{2006^{2007}+1}\Rightarrow2006A>2006B\Rightarrow A>B\)
Vậy A>B.
Ai k mình, mình k lại.
đầu bài nó như thế chứ không có sai đâu cậu ạ! mk cũng đang hỏi câu này nè
Ta có: \(C=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{1+\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}}\)
\(=\dfrac{2006}{2007}\)
Áp dụng Bất đẳng thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
Ta có :
\(\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}=\dfrac{2006^{2006}+2006}{2006^{2007}+2006}=\dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}=\dfrac{2006^{2005}+1}{2006^{2006}+1}\)
\(\Leftrightarrow\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2005}+1}{2006^{2006}+1}\)
Ta có:
\(2006A=\dfrac{2006^{2007}+2016}{2006^{2007}+1}=1+\dfrac{2005}{2006^{2007}+1}\)
\(2006B=\dfrac{2006^{2006}+2006}{2006^{2006}+1}=1+\dfrac{2005}{2006^{2006}+1}\)
Do \(\dfrac{2005}{2006^{2006}+1}>\dfrac{2005}{2006^{2007}+1}\Rightarrow1+\dfrac{2005}{2006^{2006}+1}>1+\dfrac{2005}{2006^{2007}+1}\)
\(\Rightarrow2006A< 2006B\Rightarrow A< B\)
Mình sẽ giải cách ngắn hơn cách bạn đạt nha:
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}< 1\)
\(A< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}\Rightarrow A< \dfrac{2006^{2006}+2006}{2006^{2007}+2006}\Rightarrow A< \dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}\Rightarrow A< \dfrac{2006^{2005}+1}{2006^{2006}+1}=B\)\(A< B\)