\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}=...+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1006}{1007}+\frac{x+1005}{1008}=\frac{x+1004}{1009}+\frac{x+1003}{1010}\)
\(\Rightarrow\left(\frac{x+1006}{1007}+1\right)+\left(\frac{x+1005}{1008}+1\right)=\left(\frac{x+1004}{1009}+1\right)+\left(\frac{x+1003}{1010}+1\right)\)
\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}=\frac{x+2013}{1009}+\frac{x+2013}{1010}\)
\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}-\frac{x+2013}{1009}-\frac{x+2013}{1010}=0\)
\(\Rightarrow\left(x+2013\right)\left(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\right)=0\)
Mà \(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\ne0\)
\(\Rightarrow x+2013=0\)
\(\Rightarrow x=-2013\)
Vậy x = -2013
\(\Leftrightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x}{1008}+\dfrac{x+3}{2013}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x}{1008}+\dfrac{x+2016}{2013}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x}{1008}-\dfrac{x+2016}{2013}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(-\dfrac{x}{1008}+\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x}{1008}+1+\frac{x+3}{2013}\)
\(\Leftrightarrow\frac{x+1}{2015}+1+\frac{x+2}{2014}+1=\frac{x+1008}{1008}+1+\frac{x+3}{2013}+1\)
\(\Leftrightarrow\frac{x+2016}{2015}+\frac{x+2016}{2014}=\frac{x+2016}{1008}+\frac{x+2016}{2013}\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{1008}-\frac{1}{2013}\right)=0\)
vì \(\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{1008}+\frac{1}{2013}\right)\ne0\)nên
x+2016=0\(\Leftrightarrow\)x=-2016
a: =>\(\dfrac{2x-4}{2014}+\dfrac{2x-2}{2016}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)
=>\(\dfrac{2x-2018}{2014}+\dfrac{2x-2018}{2016}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\)
=>2x-2018<0
=>x<2019
b: \(\Leftrightarrow\left(\dfrac{3-x}{100}+\dfrac{4-x}{101}\right)>\dfrac{5-x}{102}+\dfrac{6-x}{103}\)
=>\(\dfrac{x-3}{100}+\dfrac{x-4}{101}-\dfrac{x-5}{102}-\dfrac{x-6}{103}< 0\)
=>\(x+97< 0\)
=>x<-97
B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S
( A-B)2013 =0
Chúc ban học tốt nhé...!
\(\dfrac{x-3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-1}{1008}+\dfrac{x}{2017}-1\)
\(\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-1}{1008}-2\right)+\left(\dfrac{x}{2017}-1\right)\)
\(\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{1008}-\dfrac{x-2017}{2017}=0\)
\(\left(x-2017\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\right)=0\)
\(x-2017=0\) vì\(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\ne0\)
\(\Rightarrow x=2017\)
Ta có:
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
Mà \(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
\(\Rightarrow S=P\Rightarrow S-P=0\)
\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)
Vậy \(\left(S-P\right)^{2016}=0\)
Ta có:
*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)
\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0\)
\(tuA=1003+1007+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{2010}{119}=2010\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\)\(mauA=1003+1008+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{2011}{119}=2011\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\)có \(\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\ne0=>A=\dfrac{2010}{2011}\)
\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+.....+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+........+\dfrac{x+2014}{1}\)\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+...+\left(\dfrac{x+1007}{1008}+1\right)=\left(\dfrac{x+1008}{1007}+1\right)+\left(\dfrac{x+1009}{1006}+1\right)+...+\left(\dfrac{x+2014}{1}+1\right)\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+1007}{1008}=\dfrac{x+2015}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+2015}{1008}-\dfrac{x+1008}{1007}-\dfrac{x+2015}{1006}-...-\dfrac{x+2015}{1}=0\)\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1\right)=0\)\(\Leftrightarrow x+2015=0\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1>0\right)\)\(\Leftrightarrow x=-2015\)
Vậy x=-2015