K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

1)

\(M=\dfrac{1}{3}x^2+2x+10\)

\(=\dfrac{1}{3}.\left(x^2+6x+30\right)\)

\(=\dfrac{1}{3}\left(x^2+2.x.3+9\right)+7\)

\(=\dfrac{1}{3}.\left(x+3\right)^2+7\) \(\ge\) 7 với \(\forall\) x

=> M luôn dương

=> đpcm

2)

a) \(2x-x^2-15\)

\(=-\left(x^2-2x+15\right)\)

\(=-\left(x^2-2x+1\right)-14\)

\(=-\left(x-1\right)^2-14\) \(\le-14\) với \(\forall\) x

=> \(2x-x^2-15\) luôn âm

=> đpcm

b) \(-5-\left(x-1\right)\left(x+2\right)\)

\(=-5-x^2-2x+x+2\)

\(=-x^2-x-3\)

\(=-\left(x^2+x+3\right)\)

\(=-\left(x^2+2.\dfrac{1}{2}.x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\) với \(\forall\) x

=> \(-5-\left(x-1\right)\left(x+2\right)\) luôn âm

=> đpcm

26 tháng 7 2017

\(M=\dfrac{1}{3}x^2+2x+10=\dfrac{1}{3}\left(x^2+6x+9\right)+7\)

\(=\dfrac{1}{3}\left(x+3\right)^2+7\)

Ta có:

\(\dfrac{1}{3}\left(x+3\right)^2\ge\forall x\Rightarrow\dfrac{1}{3}\left(x+3\right)^2+7>0\)

=>đpcm

\(2,a,2x-x^2-15\)

\(=-\left(x^2-2x+1\right)-14\)

\(=-\left(x-1\right)^2-14\)

Ta có:

\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-14< 0\)

=> đpcm

\(b,-5-\left(x-1\right)\left(x+2\right)\)

\(=-5-\left(x^2+x-2\right)\)

\(=-5-x^2-x+2\)

\(=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\)

Ta có:

\(-\left(x+\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{1}{2}\right)-\dfrac{11}{4}< 0\)=> đpcm

a: A>0

=>\(x^2-3x>0\)

=>x(x-3)>0

TH1: \(\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\)

=>x<0

d: Để D<0 thì \(x^2+\dfrac{5}{2}x< 0\)

=>\(x\left(x+\dfrac{5}{2}\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x+\dfrac{5}{2}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x< -\dfrac{5}{2}\end{matrix}\right.\)

=>Loại

Th2: \(\left\{{}\begin{matrix}x< 0\\x+\dfrac{5}{2}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x>-\dfrac{5}{2}\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< 0\)

e: ĐKXĐ: x<>2

Để E<0 thì \(\dfrac{x-3}{x-2}< 0\)

TH1: \(\left\{{}\begin{matrix}x-3>=0\\x-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\x< 2\end{matrix}\right.\)

=>Loại

TH2: \(\left\{{}\begin{matrix}x-3< =0\\x-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\x>2\end{matrix}\right.\)

=>2<x<=3

g: Để G<0 thì \(\left(2x-1\right)\left(3-2x\right)< 0\)

=>\(\left(2x-1\right)\left(2x-3\right)>0\)

TH1: \(\left\{{}\begin{matrix}2x-1>0\\2x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{3}{2}\end{matrix}\right.\)

=>\(x>\dfrac{3}{2}\)

TH2: \(\left\{{}\begin{matrix}2x-1< 0\\2x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)

=>\(x< \dfrac{1}{2}\)

18 tháng 7 2021

\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)

Vậy.....

Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)

\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29x^2+29}{x^2+1}=29\)

23 tháng 3 2023

loading...  

13 tháng 7 2017

a, \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\forall x\)

\(\Rightarrowđpcm\)

b, \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)

\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\forall x\)

\(\Rightarrowđpcm\)

13 tháng 7 2017

thank you : <3

25 tháng 6 2017

Đề có sai ko v???

25 tháng 6 2017

đề o sai là biểu thức sai

25 tháng 5 2022

\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3x^2-3x\\ =\left(x^3-3x^2+3x-1\right)-\left(x^3+8\right)+3x^2-3x\\ =x^3-3x^2+3x-1-x^3-8+3x^2-3x\\ =-9\)

Vậy biểu thức không phụ thuộc vào giá trị của biến

a: \(=x^2-2x-3x^2+5x-4+2x^2-3x+7=3\)

b: \(=2x^3-4x^2+x-1-5+x^2-2x^3+3x^2-x=4\)

c: \(=1-x-\dfrac{3}{5}x^2-x^4+2x+6+0.6x^2+x^4-x=7\)

16 tháng 9 2018

T ko biết làm, chỉ hỏi liên thiên thôi :)))

Hủ phải không???? OvO Dưa Trong Cúc

16 tháng 9 2018

- Ko lẽ t có đồg bọn =))