1. Chứng minh biểu thức sau dương
\(M=\dfrac{1}{3}x^2+2x+10\)
2. Chứng minh biểu thức sau âm
a) \(2x-x^2-15\)
b) \(-5-\left(x-1\right)\left(x+2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A>0
=>\(x^2-3x>0\)
=>x(x-3)>0
TH1: \(\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\)
=>x>3
TH2: \(\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\)
=>x<0
d: Để D<0 thì \(x^2+\dfrac{5}{2}x< 0\)
=>\(x\left(x+\dfrac{5}{2}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x+\dfrac{5}{2}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x< -\dfrac{5}{2}\end{matrix}\right.\)
=>Loại
Th2: \(\left\{{}\begin{matrix}x< 0\\x+\dfrac{5}{2}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x>-\dfrac{5}{2}\end{matrix}\right.\)
=>\(-\dfrac{5}{2}< x< 0\)
e: ĐKXĐ: x<>2
Để E<0 thì \(\dfrac{x-3}{x-2}< 0\)
TH1: \(\left\{{}\begin{matrix}x-3>=0\\x-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\x< 2\end{matrix}\right.\)
=>Loại
TH2: \(\left\{{}\begin{matrix}x-3< =0\\x-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x>2\end{matrix}\right.\)
=>2<x<=3
g: Để G<0 thì \(\left(2x-1\right)\left(3-2x\right)< 0\)
=>\(\left(2x-1\right)\left(2x-3\right)>0\)
TH1: \(\left\{{}\begin{matrix}2x-1>0\\2x-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{3}{2}\end{matrix}\right.\)
=>\(x>\dfrac{3}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\2x-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)
=>\(x< \dfrac{1}{2}\)
\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy.....
Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=29\)
a, \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\forall x\)
\(\Rightarrowđpcm\)
b, \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\forall x\)
\(\Rightarrowđpcm\)
a: \(=x^2-2x-3x^2+5x-4+2x^2-3x+7=3\)
b: \(=2x^3-4x^2+x-1-5+x^2-2x^3+3x^2-x=4\)
c: \(=1-x-\dfrac{3}{5}x^2-x^4+2x+6+0.6x^2+x^4-x=7\)
T ko biết làm, chỉ hỏi liên thiên thôi :)))
Hủ phải không???? OvO Dưa Trong Cúc
1)
\(M=\dfrac{1}{3}x^2+2x+10\)
\(=\dfrac{1}{3}.\left(x^2+6x+30\right)\)
\(=\dfrac{1}{3}\left(x^2+2.x.3+9\right)+7\)
\(=\dfrac{1}{3}.\left(x+3\right)^2+7\) \(\ge\) 7 với \(\forall\) x
=> M luôn dương
=> đpcm
2)
a) \(2x-x^2-15\)
\(=-\left(x^2-2x+15\right)\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\) \(\le-14\) với \(\forall\) x
=> \(2x-x^2-15\) luôn âm
=> đpcm
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-x^2-2x+x+2\)
\(=-x^2-x-3\)
\(=-\left(x^2+x+3\right)\)
\(=-\left(x^2+2.\dfrac{1}{2}.x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\) với \(\forall\) x
=> \(-5-\left(x-1\right)\left(x+2\right)\) luôn âm
=> đpcm
\(M=\dfrac{1}{3}x^2+2x+10=\dfrac{1}{3}\left(x^2+6x+9\right)+7\)
\(=\dfrac{1}{3}\left(x+3\right)^2+7\)
Ta có:
\(\dfrac{1}{3}\left(x+3\right)^2\ge\forall x\Rightarrow\dfrac{1}{3}\left(x+3\right)^2+7>0\)
=>đpcm
\(2,a,2x-x^2-15\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\)
Ta có:
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-14< 0\)
=> đpcm
\(b,-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\)
Ta có:
\(-\left(x+\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{1}{2}\right)-\dfrac{11}{4}< 0\)=> đpcm