Cho tam giác ABC vuông tại A , AC = 8cm BC = 10 cm . Lấy M trên cạnh AB sao cho BM = 4cm . Lấy D sao cho A là trung điểm của CD .
a, Tính AB
b, M là gì của tam giác BCD
c, Gọi E là trung điểm của BC . Chứng minh rằng D , M , E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác ABC \(⊥\) A
BC2=AB2+AC2 (Pytago)
102=82+AC2 => AC=10cm
b. Xét tam giác BCD có \(\frac{BM}{AB}=\frac{\frac{16}{3}}{8}=\frac{2}{3}\)
=> M là trực tâm cuả tam giác BCD
c. Ta có: DM là đttuyến của tam giác BCD mà DE cũng là đttuyến của tam giác BCD ( BE=CE)
=> DM trùng DE=> D, M, E thẳng hàng
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8cm
mà AD=AC
nên AD=8cm
b: Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD
\(BM=\dfrac{2}{3}BA\)
Do đó: M là trọng tâm của ΔBCD
Suy ra: DM là đường trung tuyến ứng với cạnh BC
mà DE là đường trung tuyến ứng với cạnh BC
và DM,DE có điểm chung là D
nên D,M,E thẳng hàng
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8cm
mà AD=AC
nên AD=8cm
Hinh ban tu ve nhe
Ta ke duong trung tuyen DE ,goi giao diem cua DE va AB la Q
Ta co:\(AB=\sqrt{BC^2-AC^2}=\sqrt{100-64}=\sqrt{36}=6\left(cm\right)\)
Suy ra:\(MA=2\left(cm\right)\left(1\right)\)
Hay Q la trong tam cua \(\Delta BCD\)
Co \(\frac{BQ}{AB}=\frac{2}{3}\Rightarrow BQ=4\left(cm\right)\)
\(\Rightarrow AQ=2\left(cm\right)\left(2\right)\)
Tu (1) va (2) suy ra:\(AQ=AM\)
Vi \(M,Q\in AB\)va \(AQ=AM\) suy ra:\(M\equiv Q\)
Nen M la diem dong quy trong \(\Delta BCD\)
Hay 3 diem M,N,C thang hang.
:)
a: AB=6cm
Xét ΔABC có
BA là đường trung tuyến
BM=2/3BA
Do đó:M là trọng tâm của ΔBCD
b: Ta có: M là trọng tâm của ΔBCD
nên DM cắt BC tại trung điểm của BC
hay D,M,E thẳng hàng
a: AB=6cm
b: Xét ΔBCD có
BA là đường trung tuyến
BM=2/3BA
Do đó: M là trọng tâm của ΔBCD
c: Xét ΔBCD có
DM là đường trung tuyến ứng với cạnh BC
E là trung điểm của BC
Do đó: D,M,E thẳng hàng