C/m rằng gtrị of biểu thức sau k phụ thuộc vào gtrị of biến
(x-1)^3-(x-1)(x^2+x+1)-3(1-x)x
(1/3+2x)(4x^2-2/3x+1/9)-(8x^3-1/27)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn chỉ cần tính như nhân đa thức với đa thức sau đó rút gọn,kết quả ra là số thì bn gọi là ko phù hợp vào biến
\(A\left(x\right)=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3-1-\left(x^3+1\right)=x^3+1-x^3-1=0\)
Vậy biểu thức A không phụ thuộc vào biến
\(A\left(x\right)=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(A\left(x\right)=x^3+x^2+x-x^2-x-1-\left(x^3-x^2+x+x^2-x+1\right)\)
\(A\left(x\right)=x^3+x^2+x-x^2-x-1-x^3+x^2-x-x^2+x-1\)
\(A\left(x\right)=-2\)
Vậy biểu thức trên không phụ thuộc vào biến.
Câu còn lại bạn tự làm nhé tương tự như câu trên thôi !
a: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: \(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}=\dfrac{2}{27}\)
c: \(=x^3-3x^2+3x-1-x^3+1+3x\left(x-1\right)\)
\(=-3x^2+3x+3x^2-3x=0\)
a: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}=\dfrac{2}{27}\)
b: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)\cdot x\)
\(=x^3-3x^2+3x-1-x^3+1+3x\left(x-1\right)\)
\(=-3x^2+3x+3x^2-3x=0\)
c: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
a: \(=x^3-3x^2+3x-1-x^3+1-3x\left(1-x\right)\)
\(=-3x^2+3x-3x+3x^2=0\)
b: \(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}=\dfrac{2}{27}\)