bài 1 : viets các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1hiệu
a) 4x2-12xy+9y2
b) 25x2-20xy+4y2
c) 9x2+y2-6xy
d) x2+6xy+9y2
e) x2-10xy+25y2
g) (3x+2y)+2*(3x+2y)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^3-8-128-x^3=-136\\ B=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)
\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(128+x^3\right)=x^3-8-128-x^3=-136\)
\(B=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)
a)x2-6x+9
=x2-2.x.3+32
=(x-3)2
b)4x2+4x+1
=(2x)2+2.2x.1+12
=(2x+1)2
c)4x2+12xy+9y2
=(2x)2+2.2x.3y+(3y)2
=(2x+3y)2
d)4x4-4x2+4
=(2x2)2-2.2x2.2+22
=(2x2-2)2
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
a: \(\left(3x-1\right)\left(9x^2+3x+1\right)=27x^3-1\)
b: \(\left(1-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{5}+1\right)=1-\dfrac{x^3}{125}\)
c: \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
d: \(\left(4x+3y\right)\left(16x^2-12xy+9y^2\right)=64x^3+27y^3\)
\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)
a) \(2x\left(x^2-7x-3\right)=2x.x^2-2x.7x-2x.3=2x^3-14x^2-6x\)
b) \(\left(-2x^3+y^2-7xy\right)4xy^2=\left(-2x^3\right)4xy^2+y^24xy^2-7xy.4xy^2=-8x^4y^2+4xy^4-28x^2y^3\)
c) \(\left(-5x^3\right)\left(2x^2+3x-5\right)=-5x^32x^2-5x^33x-5x^3.-5=-10x^5-15x^4+25x^3\)
d) \(\left(2x^2-xy+y^2\right)\left(-3x^3\right)=-3x^32x^2-3x^3.-xy-3x^3y^2=-6x^5+3x^4y-3x^3y^2\)
e) \(\left(x^2-2x+3\right)\left(x-4\right)=x\left(x^2-2x+3\right)-4\left(x^2-2x+3\right)=x^3-2x^2+3x-4x^2+8x-12=x^3-6x^2+11x-12\)
f) \(\left(2x^3-3x-1\right)\left(5x+2\right)=5x\left(2x^3-3x-1\right)+2\left(2x^3-3x-1\right)=10x^4-15x^2-5x+4x^3-6x-2=10x^4+4x^3-15x^2-11x-2\)
\(x^2-6xy+9y^2\)
\(=x^2-2\cdot3y\cdot x+\left(3y\right)^2\)
\(=\left(x-3y\right)^2\)
viết các đa thức sau dưới dạng bình phương của một tổng hoặc hiệu
4x2 + 4x + 1
Bài 1: Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu
a) \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2=\left(2x-3y\right)^2\)
b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2=\left(5x-2y\right)^2\)
c) \(9x^2+y^2-6xy=\left(3x\right)^2-2.3xy+y^2=\left(3x-y\right)^2\)
d) \(x^2+6xy+9y^2=x^2+2x.3y+\left(3y\right)^2=\left(x+3y\right)^2\)
e) \(x^2-10xy+25y^2=x^2-2x.5y+\left(5y\right)^2=\left(x-5y\right)^2\)
g) \(\left(3x+2y\right)^2+2\left(3x+2y\right)+1=\left(3x+2y+1\right)^2\)
Câu cuối mình sửa lại đề nhé bạn! Nếu để như trên đề thì không thể viết đáp án dưới dạng bình phương của 1 tổng hoặc 1 hiệu được.
\(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
\(25x^2-20xy+4y^2=\left(5x-2y\right)^2\)
\(9x^2+y^2-6xy=\left(3x-y\right)\)
\(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(x^2-10xy+25y^2=\left(x-5y\right)^2\)
\(\left(3x+2y\right)+2\left(3x+2y\right)+1=3\left(3x+2y\right)+1=9x+6y+1\)