K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

Hình bạn tự vẽ nha!

Goi G là diem doi xung voi A qua M.
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh)
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2)
Suy ra goc AGC=90°
Suy ra goc MAB=90° (AB//CG).

28 tháng 7 2017

M A B C G

Gọi G là điểm đối xứng qua với A qua M.

\(AM=4\Rightarrow\) \(AG=AM+MG=4+4=8\left(cm\right)\)

\(AB=6\Rightarrow CG=6\)

\(\Rightarrow ABGC\) là hình bình hành.

Áp dụng định lý pitago ở \(\Delta ACG\) có:

\(AC^2=GA^2+GC^2\)

\(\Rightarrow10^2=6^2+8^2\)

\(\Rightarrow100=100\) (đúng)

\(\Rightarrow\Delta AGC\) vuông tại G

\(\Rightarrow\widehat{AGC}=90^o\)

\(\Rightarrow\widehat{MAB}=90^o\) (do A đối xứng với G qua M)

30 tháng 7 2017

Cách 1: Gọi N là trung điểm của AC.

Xét tam giác ABC ta có:

M là trung điểm BC (gt)

N là trung điểm AC (cách vẽ)

=> MN là đường trung bình của tam giác ABC.

=> MN // AB và MN = 1/2 AB = 1/2 . 6 = 3 (cm)

Ta có:

AN = 1/2 AC ( N là trung điểm AC)

=> AN = 1/2 . 10 = 5 (cm)

Xét tam giác AMN ta có:

AN2 = 25 (cm)

AM2 + MN2 = 25 (cm)

=> AN2 = AM2 + MN2

=> Tam giác AMN vuông tại M ( Định lý Pitago đảo) 

=> AM vuông góc với MN tại M

Mà MN // AB ( cmt)

Nên AB vuông góc với AM tại A

=> góc MAB = 90 độ ( đpcm)

Cách 2: Trên tia đối của tia MA lấy điểm E sao cho M là trung điểm của AE.

Xét tứ giác ABEC ta có:

2 đường chéo AE và BC cắt nhau tại M (gt)

M là trung điểm của BC (gt)

M là trung điểm của AE (cách vẽ)

=> Tứ giác ABEC là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

=> AB = EC = 6 cm.

Ta có:

AE = 2AM ( M là trung điểm của AE)

=> AE = 2 . 4 = 8 (cm)

Xét tam giác AEC ta có:

AC2 = 100 (cm)

AE2 + EC2 = 100 (cm)

=> AC2 = AE2 + EC2

=> Tam giác AEC vuông tại E.

=> góc AEC = 90 độ

Mà EC // AB ( tính chất hình bình hành ABEC)

Nên góc MAB = 90 độ ( đpcm)

28 tháng 7 2017

Goi G là diem doi xung voi A qua M. 
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh) 
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2) 
Suy ra goc AGC=90° 
Suy ra goc MAB=90° (AB//CG).

đã chứng minh xong

_______HẾT_________

28 tháng 7 2017

6 10 4 A B C L M

Gọi L là điểm đối xứng với A qua M.

Dễ dàng cm ABGC là hình bình hành \(\Rightarrow\)AB=CG=6 cm

Lại có AG=8 cm, áp dụng định lý Pitago đảo vào tam giác ACG, ta suy ra tam giác AGC vuông tại G(\(8^2+6^2=10^2\)

Lại có tam giac BAG= tam giác CGA . Do đó góc MAB= 90 độ

20 tháng 11 2023

Hạ \(AH\perp BC\) tại H. Đặt \(MB=MC=x;HM=y;AH=h\)

Theo định lý Pythagoras: \(\left\{{}\begin{matrix}AH^2+HM^2=AM^2\\AH^2+BH^2=AB^2\\AH^2+CH^2=AC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}h^2+y^2=16\\h^2+\left(x-y\right)^2=36\\h^2+\left(x+y\right)^2=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}h^2+y^2=16\\h^2+x^2+y^2-2xy=36\\h^2+x^2+y^2+2xy=100\end{matrix}\right.\)

Cộng theo vế của 2 pt thứ 2 và thứ 3 của hệ này, ta được:

\(2\left(h^2+x^2+y^2\right)=136\)

\(\Leftrightarrow x^2+\left(h^2+y^2\right)=68\)

\(\Leftrightarrow x^2+16=68\)

\(\Leftrightarrow x^2=52\) hay \(BM^2=52\)

Mà ta lại có \(AB^2+AM^2=6^2+4^2=52\)

\(\Rightarrow AB^2+AM^2=BM^2\) \(\Rightarrow\Delta ABM\) vuông tại A \(\Rightarrow\) đpcm

 

 

20 tháng 11 2023

Gọi H là điểm đối xứng với A qua M

Xét tam giác AMB và tam giác HMC có:

\(\left\{{}\begin{matrix}HM=AM\\\widehat{AMB}=\widehat{HMC}\\MB=MC\end{matrix}\right.\)

\(\Rightarrow\Delta AMB=\Delta HMC\left(c.g.c\right)\)

\(\Rightarrow HC=AB=6cm\)

Xét tam giác HAC có:

\(AH^2+HC^2=10^2\left(8^2+6^2=10^2\right)\)

\(\Rightarrow\widehat{AHC}=90^o\)

Mà \(\Delta AMB=\Delta HMC\)

\(\Rightarrow\widehat{MAB}=\widehat{MHC}=90^o\left(đpcm\right)\)

26 tháng 2 2020

pytago nha

26 tháng 12 2021

help me

 

26 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

a: Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

b: Xét ΔABD có 

MK//BD

nên \(\dfrac{MK}{BD}=\dfrac{AM}{AB}=\dfrac{5}{6}\left(1\right)\)

Xét ΔACD có 

KN//DC

nên \(\dfrac{KN}{DC}=\dfrac{AN}{AC}=\dfrac{5}{6}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{KM}{BD}=\dfrac{KN}{DC}\)

mà BD=DC

nên KM=KN

hay K là trung điểm của MN