tìm x , y \(\in z\)
a) (2x-y+1) . (2x+y-1)=11
b) x+xy+y=3
c) \(\dfrac{1}{x}+\dfrac{3}{y}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
a: \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
d: \(=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)
\(=x^2+x+1-x+1=x^2+2\)
a: Ta có: 2x=3y=5z
=>2x/30=3y/30=5z/30
=>x/15=y/10=z/6
Trường hợp 1: x-2y=5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{5}{-5}=-1\)
Do đó: x=-15; y=-10; z=-6
Trường hợp 2: x-2y=-5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{-5}{-5}=1\)
Do đó: x=15; y=10; z=6
b: Ta có: 5x=2y
nên x/2=y/5
=>x/6=y/15
Ta có: 2x=3z
nên x/3=z/2
=>x/6=z/4
=>x/6=y/15=z/4
Đặt x/6=y/15=z/4=90
=>x=6k; y=15k; z=4k
Ta có; xy=90
\(\Leftrightarrow90k^2=90\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
=>x=6; y=15; z=4
TRường hợp 2: k=-1
=>x=-6; y=-15; z=-4
Nhân cả 2 vế với 3 ta có:
\(pt\Leftrightarrow2x-\dfrac{6}{y}=1\Leftrightarrow2x=1+\dfrac{6}{y}\)
Nhận thấy rằng 2x là số nguyên, 1 là số nguyên nên \(\dfrac{6}{y}\) cũng là số nguyên
=> y ∈ Ư(6) = {\(\pm\)1; \(\pm\)2; \(\pm\)3; \(\pm\)6}
Mà 2x là số chẵn => \(1+\dfrac{6}{y}\) là số chẵn => y ∈ {\(\pm\)2; \(\pm\)6}
+) \(y=-6\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{-6}\right)=0\)
+) \(y=-2\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{-2}\right)=-1\)
+) \(y=2\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{2}\right)=2\)
+) \(y=6\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{6}\right)=1\)
Bài 1:
a: \(A=\dfrac{2x^2+2x+2+2x^2-3x+1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{5x^2+5x+5}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{5}{x-1}\)
b: Để A là số nguyên thì \(x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{2;0;6;-4\right\}\)
a: \(=\dfrac{x^2-1-3x^2+3+2x^2+7}{2x-y}=\dfrac{9}{2x-y}\)
b: \(=\dfrac{x+y+x-y+2x-3y}{1-xy}=\dfrac{4x-3y}{1-xy}\)