K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(1\le\overline{zt}^2\le81\Leftrightarrow1\le\overline{zt}\le9\)\(\Rightarrow z=0\)

\(PT\Leftrightarrow10x+y=10y+\overline{t}^2\)

\(\Leftrightarrow10x-9y=\overline{t}^2\)

(*) t=1 \(\Rightarrow10x-9y=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

(*) t=2 \(\Rightarrow10x-9y=4\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

(*) t=3\(\Rightarrow10x-9y=9\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9\end{matrix}\right.\)

(*) t=4 \(\Rightarrow10x-9y=16\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\)

(*) t=5 .....

29 tháng 11 2016

Các bạn giúp mình đi

cái V x là căn đó nghen

29 tháng 11 2016

dùng bất đẳng thức Côsi nha bạn

12 tháng 2 2023

Cho xyzt là các chữ số thỏa mãn xy khác không tìm số a = x y z t biết a - 2 x y z t = xz với kí hiệu xyz t là số tự nhiên có 4 chữ số thứ tự là x y z t

7 tháng 4 2017

a = 9 đó bạn

7 tháng 4 2017

Cách làm?

16 tháng 9 2018

\(\overline{xy}.x=\overline{zzz}\)

\(\Rightarrow\overline{xy}.x=37.3.z\)

\(\overline{xy}.x⋮37\) nên \(\left[{}\begin{matrix}\overline{xy}⋮37\\x⋮37\end{matrix}\right.\). Nhưng x khác 0 nên \(x⋮̸37\), do đó \(\overline{xy}⋮37\)

\(\Rightarrow\left[{}\begin{matrix}\overline{xy}=37\\\overline{xy}=74\end{matrix}\right.\)

+ Nếu \(\overline{xy}=37\) thì x = 3 \(\Rightarrow\overline{zzz}=111\), chọn

+ Nếu \(\overline{xy}=74\) thì x = 7 \(\Rightarrow\overline{zzz}=518\), loại.

Vậy, x = 3, y = 7, z = 1

22 tháng 1 2023

Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5, 

b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3

 

22 tháng 1 2023

Vì a,b,c khác nhau đôi một

1)Giải hệ phương trình với \(x,y,z\in R\)\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tốa)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn...
Đọc tiếp

1)Giải hệ phương trình với \(x,y,z\in R\)

\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   

2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố

a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)

b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)

3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :

\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)

4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\)\(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:

a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn

b)\(r=r_1+r_2\)

0