Cho m,n \(\in \)Z+ không là số chính phương a,b là số hữu tỉ sao cho \(a\sqrt{m}+b\sqrt{n}\in Q\)
CMR \(a\sqrt{m}+b\sqrt{n}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)
\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)
Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên
\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)
Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )
Với \(a=b=0\Rightarrow c=0\left(TM\right)\)
Vậy a=b=c=0 thỏa mãn đề bài
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....
Sửa đề : CMR:\(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a+b-c}\)
GT\(\Leftrightarrow\sqrt{a}+\sqrt{b}=\sqrt{a+b-c}+\sqrt{c}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a+b-c}+\sqrt{a}\right)^2\)
\(\Leftrightarrow a+b+2\sqrt{ab}=a+b-c+c+2\sqrt{\left(a+b-c\right)c}\)
\(\Leftrightarrow\sqrt{ab}=\sqrt{\left(a+b-c\right)c}\)
\(\Leftrightarrow ab=ac+bc-c^2\)
\(\Leftrightarrow\left(a-c\right)\left(b-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=c\\b=c\end{matrix}\right.\)
Vì a,b vai trò như nhau nên không mất tính tổng quát giả sử :\(a=c\)
Khi đó :\(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{a}=\sqrt[2014]{b}\) (1)
\(\sqrt[2014]{a+b-c}=\sqrt[2014]{a+b-a}=\sqrt[2014]{b}\) (2)
Từ (1) và (2) , ta suy ra :\(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a+b-c}\)
Vậy với a,b,c là các số thực dương thoả mãn :\(\sqrt{a}+\sqrt{b}-\sqrt{c}=\sqrt{a+b-c}\)
thì \(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a+b-c}\)