Cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\ne0\) . Rút gọn biểu thức :
\(A=\dfrac{\left(x^2+y^2+z^2\right)\cdot\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng
Nguyễn Huy Tú Lightning Farron Akai Haruma
\(A=\dfrac{bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2bcyz-2cazx-2abxy}{ax^2+by^2+cz^2}=\dfrac{\left(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\right)-\left(ax+by+cz\right)^2}{ax^2+by^2+cz^2}=\dfrac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)
Đặt x/a=y/b=z/c=k
=>x=ak; y=bk; z=ck
\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)
\(=\dfrac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
Trừ cả 2 vế cho \(a^2x^2+b^2y^2+c^2z^2\), ta có:
\(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2axby+2bycz+2axcz\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\left(a^2y^2+b^2x^2-2axby\right)+\left(a^2z^2+c^2z^2-2axcz\right)+\left(b^2z^2+c^2y^2-2bycz\right)=0\)
\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Mà \(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
=> đpcm
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne̸0\) thì \(x=ak;y=bk;z=ck.\)
Do đó : \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)^2}{k^2\left(a^2+b^2+c^2\right)^2}=1.\)
Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\) \(\left(k\ne0\right)\) \(\Rightarrow\left\{{}\begin{matrix}x=a.k\\y=b.k\\z=c.k\end{matrix}\right.\)
Ta có :
\(A=\dfrac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
\(A=\dfrac{\left[\left(a.k\right)^2+\left(b.k\right)^2+\left(c.k\right)^2\right]\cdot\left(a^2+b^2+c^2\right)}{\left(a.a.k+b.b.k+c.c.k\right)^2}\)
\(A=\dfrac{\left(a^2k^2+b^2k^2+c^2k^2\right)\cdot\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)
\(A=1\)