So sánh:
a, 2\(^{91}\) và 5\(^{35}\)
b, 222\(^{333}\) và 333\(^{222}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 222 ^ 333 và 333 ^ 222
Ta có :
222 ^ 333 = ( 222 ^ 3 ) ^ 111 = 10941048 ^ 111
333 ^ 222 = ( 333 ^ 2 ) ^ 111 = 110889 ^ 111
Vì 10941048 ^ 111 > 110889 ^ 111
=> 222 ^ 333 > 333 ^ 222
b ) 9 ^ 20 và 27 ^ 13
Ta có :
9 ^ 20 = ( 3 ^ 2 ) ^ 20 = 3 ^ 40
27 ^ 13 = ( 3 ^ 3 ) ^ 13 = 3 ^ 39
Vì 3 ^ 40 > 3 ^ 39
=> 9 ^ 20 > 27 ^ 13
c ) 3 ^ 200 và 2 ^ 300
Ta có :
3 ^ 200 = ( 3 ^ 2 ) ^ 100 = 9 ^ 100
2 ^ 300 = ( 2 ^ 3 ) ^ 100 = 8 ^ 100
Vì 9 ^ 100 > 8 ^ 100
=> 3 ^ 200 > 2 ^ 300
222333=(2223)111=10941048111
333222=(3332)111=110889111
Vì: 10941048111>110889111
Nên; 222333>333222
thử giút gọn 2^3 và 3^2= 12 và 9 => 12>9 nên => 222^333>333^222
Làm đầy đủ nè :
(2223)111 = (2 x 111)3 = 8 x 1113 = 8 x 111 x 1112 = 888 x 1112
(3332)111 = (3 x 111)2 = 9 x 1112
Vì 888 x 1112 > 9 x 1112.
Vậy 222333 > 333222
222333 = 2223 . 111 = ( 2223 )111 = 10941048111
333222 = 3332 . 111 = ( 3332 )111 = 110889111
Vi 10941048 > 110889 nen 10941048111 > 11088911
Nen 222333 > 333222
*** cho mik nha !!!
222333 và 333222
Ta có: 222333 = 2223.111 = ( 2223 ) 111 = 10 941 048111
333222 = 3332.111 = ( 3332)111 = 110 889111
vì 10 941 048 > 110 889 => 10 941 048111 > 110 889111
hay: 222333 > 333222
vậy: 222333 > 333222
Ta có: 222333= 222.222. ... .222( 333 thừa số 222)
= (222.222.222).(222.222.222). ... .(222.222.222) (111 thừa số (222.222.222))
=10941048.10941048. ... .10941048(111 thừa số 10941049)
333222= 333.333. ... .333( 222 thừa số 333)
= (333.333).(333.333). ... .(333.333) (111 thừa số (333.333))
= 110889.110889. ... .110889(111 thừa số 110889)
Vì 10941048.10941048. ... .10941048( 111 thừa số 10941048)> 110889.110889. ... .110889(111 thừa số 110889)
Vậy 222333>333222
Ta co:
222333= 111111.23= 111111.8
333222=111111.32= 111111.9
Vi 9 ) 8
=) 111111.32 ) 111111.23
Do do : 333222 ) 222333
(2223)111 và (3332)111
(2 x 111)3 và (3 x 111)2
8 x 1113 và 9 x 1112
888 x 1112 và 9 x 1112.
Kết luận : 222^333 > 333^222.
a, \(2^{91}\) và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\) nên \(2^{91}>5^{35}\)
b, \(222^{333}\) và \(333^{222}\)
Ta có :
\(222^{333}=\left(2.111\right)^{333}=2^{333}.111^{333}=\left(2^3\right)^{111}.111^{333}=8^{111}.111^{333}\)
\(333^{222}=\left(3.111\right)^{222}=3^{222}.111^{222}=\left(3^2\right)^{111}.111^{222}=9^{111}.111^{222}\)
Vì \(8^{111}< 9^{111}\) nên \(222^{333}< 333^{222}\)