Cho x,y, là 2 số thực thỏa mãn : x2 +2y2 +2xy+ 7x + 7y+10=0
Tìm GTNN và GTLN của bt A=x+y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow x^2+2xy+y^2+7x+7y=-y^2\le0\)
\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)\le0\)
\(\Leftrightarrow\left(x+y+7\right)\left(x+y\right)\le0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y+7\ge0\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y+7\le0\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y\ge-7\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y\le-7\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-7\le x+y\le1\) \(\Leftrightarrow-6\le x+y+1\le1\)
vậy \(GTNN\) của \(A\) là \(-6\) và \(GTLN\) của \(A\) là \(1\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Ta có
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0
<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0
<=> A2 + 5A + y2 + 4 = 0
<=> y2 = - 4 - 5A - A2 \(\ge0\)
<=> \(-4\le A\le-1\)
Vậy GTLN là -1, GTBN là - 4