Tìm X ,Y thuộc Z , biết:
xy-2x+y+1=0
l x-3 l = 2x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 , sai đề
2/ xy-x-y+1=0
x(y-1)-(y-1)=0
(y-1)(x-1)=0
->y-1=o hoặc x-1=0
y-1=0 y=1
x-1=0 x=1
vậy x=y=1
3,
\(1)|5-2x|=|x+4|\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=x+4\\5-2x=-x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x-x=4-5\\-2x+x=-4-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}-3x=-1\\-x=-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=9\end{cases}}}\)
Vậy \(x=\frac{1}{3};x=9\)
\(2)|x-1|=|2x+5|\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x+5\\x-1=-2x-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=5+1\\x+2x=-5+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=4\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=-\frac{4}{3}\end{cases}}}\)
Vậy \(x=-4;x=-\frac{4}{3}\)
\(3)|x+1|+|x+2|+|x+3|=0\left(1\right)\)
Ta có: \(|x+1|\ge0\forall x;|x+2|\ge0\forall x;|x+3|\ge0\forall x\)
\(\Leftrightarrow|x+1|+|x+2|+|x+3|\ge0\forall x\)
\(\left(1\right)\Leftrightarrow|x+1|+|x+2|+|x+3|=0\)
\(\Leftrightarrow\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=0\)
\(\Leftrightarrow x+1+x+2+x+3=0\)
\(\Leftrightarrow\left(x+x+x\right)+\left(1+2+3\right)=0\)
\(\Leftrightarrow3x+6=0\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-6:3\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
a)
<=> x+y=0 hoặc 2x-1=0
<=> x=-y hoặc x=1/2.
b)
=> x+y và 2x-1 là ước của 3 =1;3;-1;-3.
Do 2x-1 ko chia hết cho 2
TH1=> 2x-1=-1 và x+y=-3
=> x=0 và y=-3
TH2: 2x-1=1 và x+y=3
=> x=1 và y=2.
c) <=>x(y+1)-2y-2=1
<=> x(y+1)-2(y+1)=1
<=> (x-2)(y+1)=1
=> x-2; y+1 là ước của 1 =1;-1
TH1 x-2=1 và y+1=1
=> x=3 và y=0
TH2 x-2=-1 và y+1=-1
=> x=1 và y=-2.
( x + y ).( 2x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+y=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\2x=0+1\end{cases}\Rightarrow}\orbr{\begin{cases}x+y=0\\2x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}+y=0\\x=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}y=0+\frac{1}{2}\\x=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}y=\frac{1}{2}\\x=\frac{1}{2}\end{cases}}}\)
Vậy ...................
a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x
(3-2x)>0 suy ra|3-2x|=3-2x
ta có: 2-x+3-2x=2x+1
5-3x=2x+1
5-1=2x+3x
6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)
nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x
2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3
ta có:2-x+2x-3=2x+1
-1+x=2x+1
-1-1=2x-x
-2=x(loại vì ko thuộc khả năng xét)
nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2
3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3
ta có:x-2+2x-3=2x+1
3x-5=2x+1
3x-2x=5+1
x=6(chọn vì thuộc khả năng xét)
suy ra x=6
c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)
ta có: 4(15k)-3(10k)+5(8k)=7
60k-30k+40k=7
70k=7 suy ra k=1/10
ta có:x=1/10.15=3/2
y=1/10.10=1
a,Vì x,y thuộc Z nên \(\hept{\begin{cases}x+3\\y+1\end{cases}\in Z}\)
\(\Rightarrow\left(x+3\right);\left(y+1\right)\inƯ\left(3\right)\)
\(\Rightarrow\left(x+3\right);\left(y+1\right)\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x+3=1\Rightarrow x=-2\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=-1\Rightarrow x=-4\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=3\Rightarrow x=0\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=-3\Rightarrow x=-6\\y+1=-1\Rightarrow x=-2\end{cases}}\)
xy + x - 2x - 3 = 0
=> x(y + 1) - 2x = 3
=> x(y + 1) = 2x + 3
=> 2x + 3 chia hết cho x
=> 3 chia hết cho x
=> x thuộc {-1; 1; -3; 3}
Ta có bảng:
x | 1 | -1 | 3 | -3 |
y + 1 | 5 | -1 | 6 | 1 |
y | 4 | -2 | 5 | 0 |
Vậy...
\(xy-2x+y+1=0\)
\(\Rightarrow xy-2x+y-2=-1\)
\(\Rightarrow x\left(y-2\right)+1\left(y-2\right)=-1\)
\(\Rightarrow\left(x+1\right)\left(y-2\right)=-1\)
\(\Rightarrow x+1;y-2\inƯ\left(-1\right)\)
\(Ư\left(-1\right)=\left\{\pm1\right\}\)
Xét ước
\(\left|x-3\right|=2x+1\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\left(đk:x\ge3\right)\\-x+3=2x+1\left(đk:x< 3\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2x+4\\-x=2x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-x=4\Rightarrow x=-4\left(KTM\right)\\x=\dfrac{2}{3}\left(TM\right)\end{matrix}\right.\)
Bạn ơi, cho mk hỏi sao rằng xy- 2x +y - 2 lại bằng -1 vậy bạn