K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)

Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)

Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)

Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :

\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)

Vậy số sản phẩm dự định là 750 sản phẩm

4 tháng 4 2021

Bài 3:

Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)

Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)

Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)

Theo bài ra, ta có phương trình:

\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)

\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)

\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)

Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm

22 tháng 10 2021

\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)

Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)

\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)

Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)

22 tháng 10 2021

a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)

29 tháng 11 2021

Có : G - T = 140 nu

   2T + 3G = 2520

=> A = T = 420 nu

G = X = 560 nu

N = 2 ( A + G ) = 1960 nu

l = N x 3,4 : 2 = 3332Ao

29 tháng 11 2021

Ta có: \(G-T=140\)

          \(2T+3G=2520\)

\(\Rightarrow\left\{{}\begin{matrix}A=T=420nu\\G=X=560nu\end{matrix}\right.\)

\(N=2A+2G=2\cdot420+2\cdot560=1960nu\)

\(l=\dfrac{2N}{3,4}=\dfrac{2\cdot1960}{3,4}=1152,94A^o\)

Câu 1 em mở SGK nha

Câu 2:

a) Fe2O3 + 3 H2 -to-> 2 Fe + 3 H2O

b) HgO + H2 -to->Hg + H2O

c)PbO + H2 -to-> Pb + H2O

Câu 3:

nHgO= 21,7/217=0,1(mol)

PTHH: HgO + H2 -to-> Hg + H2O

0,1________0,1_______0,1(mol)

a) nHg= 0,1.201=20,1(g)

b)mH2=0,1.2=0,2(g)

V(H2,đktc)=0,1.22,4=2,24(l)

4)

nH2= 8,4/22,4=0,375(mol)

PTHH: H2 + 1/2 O2 -to-> H2O

0,375__________________0,375

=>mH2O=0,375.18= 6,75(g)

Cảm ơn anh ạ <3

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

b: ΔABD=ΔACD

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

c: Ta có: \(\widehat{ADB}=90^0\)

=>AD\(\perp\)BC tại D

D là trung điểm của BC

=>\(DB=DC=\dfrac{BC}{2}=\dfrac{24}{2}=12\left(cm\right)\)

ΔADB vuông tại D

=>\(AD^2+DB^2=AB^2\)

=>\(AD^2=20^2-12^2=256\)

=>\(AD=\sqrt{256}=16\left(cm\right)\)

Xét ΔABC có

AD là đường trung tuyến

G là trọng tâm

Do đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot16=\dfrac{32}{3}\left(cm\right)\)

7 tháng 1 2021

Gửi muộn thế em, giờ này ít người thức khuya lắm

\(\overrightarrow{F}+\overrightarrow{F_{ms}}+\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)

\(\left\{{}\begin{matrix}Ox:F-F_{ms}-mg\sin\alpha=m.a\\Oy:N=mg\cos\alpha\end{matrix}\right.\)

\(\Rightarrow F-\mu mg\cos\alpha-mg\sin\alpha=m.a\Rightarrow F=...\)

7 tháng 1 2021

Dạ vâng lần sau rút kinh nghiệmCảm ơn anh!

NV
5 tháng 1 2021

ĐKXĐ: \(-1\le x\le4\)

\(\Leftrightarrow\left(x-3\right)\sqrt{1+x}-\left(x-3\right)+x-x\sqrt{4-x}=2x^2-6x\)

\(\Leftrightarrow\left(x-3\right)\left(\sqrt{1+x}-1\right)+x\left(1-\sqrt{4-x}\right)=2x^2-6x\)

\(\Leftrightarrow\dfrac{x\left(x-3\right)}{\sqrt{1+x}+1}+\dfrac{x\left(x-3\right)}{1+\sqrt{4-x}}=2\left(x^2-3x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x=0\Rightarrow x=...\\\dfrac{1}{\sqrt{1+x}+1}+\dfrac{1}{1+\sqrt{4-x}}=2\left(1\right)\end{matrix}\right.\)

Xét (1), do \(VT< \dfrac{1}{1}+\dfrac{1}{1}=2\Rightarrow VT< VP\Rightarrow\left(1\right)\) vô nghiệm

Vậy ...