K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

do x<y =>a/m<b/m=>a<b

ta có:

x=a/m=2a/2m

y=b/m=2b/2m

do a<b=>a+a/2m<a+b/2m

<=>2a/2m<a+b/2m

<=>x<z (1)

do a<b=>a+b/2m<b+b/2m

<=>a+b/2m<2b/2m

<=>z<y (2)

từ (1) và (2)=>ĐPCM

 

7 tháng 6 2015

 x =a/m =>. x = 2a/2m 
y =b/m => y = 2b/2m 
z = (a+b)/2m 
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1) 
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2) 
Suy ra: 
2a < a +b < 2b 
Suy ra (chia 2 vế cho 2m) : 
2a/2m < (a +b)/2m < 2b 
R út gọn ta được : x < z <y

27 tháng 8 2015

Ta có:

x = \(\frac{a}{m}\)\(\Rightarrow\)x = \(\frac{2a}{2m}\Rightarrow\)x = \(\frac{a+a}{2m}\)

y = \(\frac{b}{m}\Rightarrow\)y = \(\frac{2b}{2m}\Rightarrow\)y = \(\frac{b+b}{2m}\)

Mà x < y \(\Rightarrow\) a < b \(\Rightarrow\)a + a < b + b

Vì a + a < b + b \(\Rightarrow\)\(\frac{a+a}{2m}\) < \(\frac{a+b}{2m}\) < \(\frac{b+b}{2m}\Rightarrow\)\(\frac{a}{m}\)\(\frac{a+b}{m}\) < \(\frac{b}{m}\)

Vậy x < z < y

27 tháng 8 2015

C1:

Ta có:  \(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\)

Vì x<y nên a<b

Vì 2a< a+b< 2b

=> \(\frac{2a}{2m}

27 tháng 8 2015

bạn vào câu hỏi tương tự đó

17 tháng 8 2015

m>0 và x<y nên a<b                                                                                                                                       Do đó \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}

17 tháng 8 2015

ta có \(\frac{a}{m}

16 tháng 7 2019

Vì x < y nên Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 mà m > 0 nên a < b. Ta có

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Chọn số Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7. Do 2a < 2a + 1 và m > 0 nên Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 hay x < z. (1)

Do a < b và a; b ∈ Z nên a + 1 ≤ b suy ra 2a + 2 ≤ 2b.

Ta có 2a + 1 < 2a + 2 ≤ 2b nên 2a + 1 < 2b, do đó Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 hay z < y. (2)

Từ (1) và (2) suy ra: x < z < y