chứng minh rằng
a; 101234 +2 chia het cho 3
b ; 10 789 + 8 chia het cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ghi lại đề: \(A=3+3^2+...+3^{2020}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2017}+3^{2018}+3^{2019}+3^{2020}\right)\\ A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\\ A=\left(1+3+3^2+3^3\right)\left(3+...+3^{2017}\right)\\ A=40\left(3+...+3^{2017}\right)⋮10\left(40⋮10\right)\)
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
VT `=1+tan^2 α`
`=1+ (sin^2α)/(cos^2α)`
`= (cos^2α+sin^2α)/(cos^2α)`
`= 1/(cos^2α)`
a, \(1+tan^2a=\dfrac{1}{\cos^2a}\)
ĐT \(\Leftrightarrow\cos^2a\left(1+\tan^2a\right)=1\)
\(\Leftrightarrow\cos^2a+\cos^2a.\tan^2a=1\)
\(\Leftrightarrow\cos^2a.\dfrac{\sin^2a}{\cos^2a}+\cos^2a=\sin^2a+\cos^2a=1\) ( ĐT đã có )
=> ĐPCM
Vậy ...
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+...+\frac{1}{60}\right)>\frac{1}{45}.15+\frac{1}{60}.15=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
=>đpcm
l-i-k-e cho mình nha
\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
Cộng vế với vế ta được
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Vậy ta có đpcm
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
Ta có \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{b}{c}\right)^2=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
Vậy .....
`A=\sqrt{1+2008^2+2008^2/2009^2}+2008/2009`
`=\sqrt{1+2008^2+2.2008+2008^2/2009^2-2.2008}+2008/2009`
`=\sqrt{(2008+1)^2-2.2008+2008^2/2009^2}+2008/2009`
`=\sqrt{2009-2.2008/2009*2009+2008^2/2009^2}+2008/2009`
`=\sqrt{(2009-2008/2009)^2}+2008/2009`
`=|2009-2008/2009|+2008/2009`
`=2009-2008/2009+2008/2009`
`=2009` là 1 số tự nhiên
Sai đề rồi !
ÁP DỤNG CHỮ SỐ TẬN CÙNG THÌ LÀM SAO ĐƯỢC ?!