phân tích đa thức sau thành nhân tử
x^3+y^3+z^3-3xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\left(1\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
có tkế dừng lại ở (1) cũg đk
\(x^3+y^3+z^3+3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3+3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y+z\right)+z^3\)
\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=x^2\left(x+y\right)-\left(x+y\right)=\left(x^2-1\right)\left(x+y\right)=\left(x-1\right)\left(x+1\right)\left(x+y\right)\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\left(x^3+y^3\right)+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy+yz+zx\right)\)
\(x^3+y^3+z^3-3xyz=\left(x^3+y^3\right)-3xyz+z^3\)
\(=\left(x+y\right)^3-3xy.\left(x+y\right)-3xyz+z^3\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy.\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right).\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy.\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left(x^2+y^2+z^2-zx-zy+2zy-3xy\right)\)
\(=\left(x+y+z\right).\left(x^2+z^2+y^2-zx-zy-xy\right)\)
Vừa làm xong . Chúc bạn học tốt !
\(=\left(x+y\right)^3+z^z-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)