K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)

mà BD+CD=28cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)

Do đó: BD=10,5cm; CD=17,5cm

Xét ΔBAC có 

DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)

\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)

a: BC=căn 12^2+16^2=20cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC=3/4

=>BD/3=DC/4=(BD+DC)/(3+4)=20/7

=>BD=60/7cm; DC=80/7cm

Xét ΔCAB có ED//AB

nên ED/AB=CD/CB=4/7

=>ED/12=4/7

=>ED=48/7cm

b: S ABC=1/2*12*16=96cm2

BD/BC=3/7

=>S ABD/S ABC=3/7

=>S ABD=288/7cm2

14 tháng 4 2019

* Trong △ ABC, ta có:

AD là đường phân giác của ∠ (BAC)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất tia phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy DC = BC - DB = 28 - 10,5 = 17,5 (cm)

* Trong △ ABC, ta có: DE // AB

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Vậy: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

21 tháng 4 2020

A B C D E

Vì AD là phân giác \(\widehat{BAC}\left(gt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)(tính chất đường phân giác tam giác )

\(\Rightarrow\frac{AB}{AC+AB}=\frac{BD}{BD+DC}\)

\(\Rightarrow\frac{12}{12+20}=\frac{BD}{BC}\)

\(\Rightarrow\frac{12}{32}=\frac{BD}{28}\)

\(\Rightarrow BD=\frac{12.28}{32}=10,5cm\)

Ta có : \(BD+DC=BC\left(D\in BC\right)\)

\(\Rightarrow DC=28-10,5=17,5cm\)

Xét \(\Delta ABC\)có \(DE//AB\left(gt\right)\)

\(\Rightarrow\frac{DE}{AB}=\frac{DC}{BC}\)(hệ quả định lí Ta - lét )

\(\Rightarrow DE=\frac{AB.DC}{BC}=\frac{12.17,5}{28}=7,5cm\)

Chúc bạn học tốt !

21 tháng 4 2020

Tia p/g góc A cắt BC tại D

\(\Rightarrow\)Áp dụng tích chất đường phân giác trong tam giác ta có: \(\frac{BD}{AB}=\frac{DC}{AC}\Leftrightarrow\frac{BD}{12}=\frac{DC}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có: \(\frac{BD}{12}=\frac{DC}{20}=\frac{BD+DC}{12+20}=\frac{28}{32}=\frac{7}{8}\)

\(\Rightarrow\hept{\begin{cases}BD=\frac{7}{8}\times12=10.5cm\\DC=\frac{7}{8}\times20=17.5cm\end{cases}}\)

Vì DE//AB (theo đề bài) \(\Rightarrow\)Nó tạo thành hai tam giác đồng dạng là \(\Delta CDE\)và \(\Delta CBA\)

Nên ta có tỉ lệ các cạnh là: \(\frac{CE}{CA}=\frac{CD}{CB}=\frac{ED}{AB}\Leftrightarrow\frac{DE}{12}=\frac{17.5}{28}=\frac{5}{8}\)

\(\Rightarrow DE=\frac{5}{8}\times12=7.5cm\)

Vậy cạnh DE có độ dài bằng 7.5cm

a: Xét ΔABD và ΔECD có

góc ADB=góc EDC

góc ABD=góc ECD

=>ΔABD đồng dạng với ΔECD

b: AD là phân giác

=>DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3=(DB+DC)/(2+3)=15/5=3

=>DB=6cm; DC=9cm

a: \(BC=\sqrt{20^2+21^2}=29\left(cm\right)\)

b: AD là phân giác

=>BD/AB=CD/AC
=>BD/20=CD/21=29/41

=>BD=580/41cm; CD=609/41cm

c: Xet tứ giác AEDF có

AE//DF

DE//FA

góc FAE=90 độ

AD là phan giác của góc FAE

=>AEDF là hình vuông