K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

28 tháng 3 2023

Bước 1: Nhân cả hai tầm nhìn của phương pháp với -1 để chuyển các hạng tử âm sang tầm nhìn bên phải của dấu bằng, ta được:

9y² - 3x² - 4z² - 6y²z² = -243

Bước 2: Tách biến và rút gọn chúng lại:

3x² - 9y² + 6y²z² = 4z² + 243

Bước 3: Áp dụng bổ đề Fermat để giải phương trình:

Ta có:

(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc

Áp dụng công thức trên, ta có:

(2z - 3y)² + 3x² = (13)²

Vì x, y, z là các nguyên dương nên ta có 2z - 3y > 0, do đó ta có:

2z - 3y = 13

Như vậy, ta có hệ thống phương tiện:

2z - 3y = 13
3x² = 169 - (2z - 3y)²

Bước 4: Giải hệ phương trình:

Với 2z - 3y = 13, ta có thể giải được y và z theo x:

y = (2z - 13)/3

z = (3y + 13)/2

Thay vào phương trình 3x² = 169 - (2z - 3y)², ta được:

3x² = 169 - (2((3y + 13)/2) - 3y)² = 169 - 49y²

Từ đó, ta có:

y² = (169 - 3x²)/49

y là số nguyên dương, do đó chỉ có một số giá trị của x có thể làm cho y là số nguyên, đó là khi 169 - 3x² chia hết cho 49. Ta có:

3x² = 169 - 49k (với k là một số nguyên)

x² + 16k/3 = 169/3

Vì x là một số nguyên dương, nên 169/3 - 16k/3 phải là một số chính phương. Kiểm tra và tìm được:

169/3 - 16k/3 = 64

k = 15

Thay k = 15 vào phương trình 3x² = 169 - 49k, ta được:

x² = 64

x = 8

Bước 5: Kết luận:

Do đó các bộ số nguyên dương đối với phương trình là: (x, y, z) = (8, 1, 5) hoặc (x, y, z) = (8, 1, -6).

NV
28 tháng 3 2023

Do \(243\) ; \(3x^2-9y^2+6y^2z^2\) đều chia hết cho 3 \(\Rightarrow4z^2\) chia hết cho 3

\(\Rightarrow z\) chia hết cho 3 \(\Rightarrow z=3z_1\) với \(z_1\) nguyên dương

\(\Rightarrow3x^2-9y^2+36z^2_1+54y^2z_1^2=243\)

\(\Rightarrow x^2-3y^2+12z_1^2+18y^2z_1^2=81\)

Lý luận tương tự ta được \(x=3x_1\) với \(x_1\) nguyên dương

\(\Rightarrow9x_1^2-3y^2+12z_1^2+18y^2z_1^2=81\)

\(\Rightarrow3x_1^2-y^2+4z_1^2+6y^2z_1^2=27\) (1)

\(\Rightarrow3x_1^2+4z_1^2+y^2\left(6z_1^2-1\right)=27\)

Do \(x_1;z_1\) nguyên dương \(\Rightarrow x_1;z_1\ge1\)

\(\Rightarrow3x_1^2+4z_1^2+y^2\left(6z_1^2-1\right)\ge3+4+5y^2=7+5y^2\)

\(\Rightarrow7+5y^2\le27\Rightarrow y^2\le4\Rightarrow y\le2\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

- Với \(y=1\) thế vào (1) 

\(\Rightarrow3x_1^2+10z_1^2=28\)

Nếu \(z_1\ge2\Rightarrow3x_1^2+10z_1^2>28\) (ktm) \(\Rightarrow z_1=1\Rightarrow3x_1^2=18\) ko tồn tại \(x_1\) nguyên thỏa mãn

- Với \(y=2\) thế vào (1) \(\Rightarrow3x_1^2+28z_1^2=31\Rightarrow x_1=z_1=1\) 

\(\Rightarrow x=z=3\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn là \(\left(x;y;z\right)=\left(3;2;3\right)\)

1 tháng 3 2016

đề bài ko có z

1 tháng 3 2016

<=>(x+5)y+3x=-28

<=>(x+5)y+3x-(-28)=0

=>(x+5)y+3x+28=0

=>x=-5

=>y=-3

NV
14 tháng 3 2022

\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)

\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)

Ta có:

\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)

Đẳng thức xảy ra khi và chỉ khi:

\(x^2=y^2+5=z\)

Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)

\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:

\(\left(x;y;z\right)=\left(3;2;9\right)\)