K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

\(\Sigma\left(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}\right)\) cho x chạy từ 2-2014

kq 43.47453781

c: Ta có: \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}\)

\(=4+\sqrt{10}-4+\sqrt{10}\)

\(=2\sqrt{10}\)

d: Ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}\)

\(=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1\)

\(=2\sqrt{2}\)

30 tháng 9 2021

a) \(=\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2=12-18=-6\)

b) \(=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}-\sqrt{2015}=-\sqrt{2013}-\sqrt{2015}\)

c) \(=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

d) \(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

2 tháng 7 2017

Giải:

\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)

\(=1-\dfrac{1}{\sqrt{2015}}\)

2 tháng 3 2018

\(B=B_1+B_2+...+B_{2016}\)

\(B_1=\dfrac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x}}{x+1-x}\)

\(B_1=\sqrt{x+1}-\sqrt{x}\)

\(B_2=\sqrt{x+2}-\sqrt{x+1}\)

\(B_3=\sqrt{x+3}-\sqrt{x+2}\)

...

\(B_{2015}=\sqrt{x+2015}-\sqrt{x+2014}\)

\(B_{2016}=\sqrt{x+2016}-\sqrt{x+2015}\)

\(B=\sqrt{x+2016}-\sqrt{x}\)

\(B\left(2017\right)=\sqrt{2017+2016}-\sqrt{2017}\)

19 tháng 7 2021

1, \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}=\dfrac{3+2\sqrt{2}}{9-8}-\dfrac{3-2\sqrt{2}}{9-8}\)

\(=3+2\sqrt{2}-3+2\sqrt{2}=4\sqrt{2}\)

2, \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+\sqrt{12}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}.\left(-1\right)}-\dfrac{3\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}.\left(-1\right)}\)

\(=\dfrac{2\sqrt{3}+3\sqrt{2}-3\sqrt{2}+3\sqrt{3}}{-\sqrt{6}}=\dfrac{5\sqrt{3}}{-\sqrt{6}}=-5\sqrt{18}=-15\sqrt{2}\)

3, \(\dfrac{2}{\sqrt{5}-2}+\dfrac{-2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)}{1}-\dfrac{2\left(\sqrt{5}-2\right)}{1}\)

\(=2\sqrt{5}+4-2\sqrt{5}+4=8\)

tương tự 

\(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}=3+2\sqrt{2}-3+2\sqrt{2}=4\sqrt{2}\)

7 tháng 6 2021

a, ĐKXĐ: \(x\ge0,\)

b, ĐKXĐ: \(x\ge0,x\ne1\)

c, ĐKXĐ: \(x\ge0,x\ne4\)

d,ĐKXĐ:\(x\ge0,x\ne9,x\ne4\)

e,ĐKXĐ:\(x\ge0,x\ne1,x\ne4\)

27 tháng 8 2021

a, \(x+1\ge0\Leftrightarrow x\ge-1\)

b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)

c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

27 tháng 8 2021

d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)

e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)