Tinhs toongr cacs soos hangj cos quy luaatj:
\(\dfrac{1}{2}+\dfrac{11}{6}+\dfrac{35}{12}+\dfrac{79}{20}+....+\dfrac{980099}{9900}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+..+\dfrac{1}{195}\) ( là 195 ms đúng ! )
\(B=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{13\cdot15}\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{15}\right)=\dfrac{1}{2}\cdot\dfrac{14}{15}=\dfrac{7}{15}\)
\(C=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{98\cdot100}\)
Rồi làm tương tự cân b nha!
\(D=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}\)
\(+\dfrac{1}{57}-\dfrac{1}{87}\)
\(D=\dfrac{1}{3}-\dfrac{1}{87}=\dfrac{28}{87}\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
Vậy...
\(A=\dfrac{1}{2}+\dfrac{3-2}{3.2}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{100.99}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{2007.2009}+\dfrac{2}{2009..2011}\)
\(2B=\dfrac{3-1}{1.3}+\dfrac{5-3}{3,5}+...+\dfrac{2009-2007}{2009.2007}+\dfrac{2011-2009}{2011.2009}\)
\(2B=\dfrac{3}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2011}\)
\(2B=1-\dfrac{1}{2011}\)
\(2B=\dfrac{2010}{2011}\)
\(B=\dfrac{2010}{4022}\)
Ta có các hạng tử là:
\(\dfrac{1}{2}=\dfrac{1}{1\cdot2};\dfrac{1}{6}=\dfrac{1}{2\cdot3};\dfrac{1}{12}=\dfrac{1}{3\cdot4};\dfrac{1}{20}=\dfrac{1}{4\cdot5};...;\dfrac{1}{9900}=\dfrac{1}{99\cdot100}\)
Ta thấy tất cả đề là: \(\dfrac{1}{x\left(x+1\right)}\)
Tính chất đặc trưng của tập hợp là:
\(A=\left\{\dfrac{1}{x\left(x+1\right)}|x\in N,1\le x\le99\right\}\)
a)
MSC: 35
\(\dfrac{4}{7}=\dfrac{4\times5}{7\times5}=\dfrac{20}{35}\)
\(\dfrac{28}{35}\) giữ nguyên
b)
MSC: 100
\(\dfrac{13}{20}=\dfrac{13\times5}{20\times5}=\dfrac{65}{100}\)
c)
MSC: 24
\(\dfrac{5}{6}=\dfrac{5\times4}{6\times4}=\dfrac{20}{24}\)
\(\dfrac{9}{8}=\dfrac{9\times3}{8\times3}=\dfrac{27}{24}\)
a, 4/7 và 28/35
ta có :
4/7=20/35
28/35
b13/20 và 32/100
ta có :
13/20=65/100
32/100
c,5/6,9/8 và 11/24
ta có :
5/6=20/24
9/8=27/24
11/24
A = \(\dfrac{1}{12}\)+ \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+...+\(\dfrac{1}{9900}\)
A = \(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A = \(\dfrac{1}{3}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{97}{300}\)
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{99.100}$
$=\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}$
$=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}$
a: \(\Leftrightarrow\dfrac{32}{x}=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{99}\)
=>32/x=1/3-1/5+1/5-1/7+...+1/9-1/11
=>32/x=1/3-1/11=8/33
=>x=32:8/33=132
b: \(\Leftrightarrow1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{56}=\dfrac{x}{16}\)
\(\Leftrightarrow6-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{x}{16}\)
=>x/16=6-1/2+1/8=11/2+1/8=45/8=90/16
=>x=90
c: \(\Leftrightarrow\dfrac{22}{x}=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\)
=>22/x=1/2*2/3*...*9/10*3/2*4/3*...*11/10
=>22/x=1/10*11/2=11/20=22/40
=>x=40
bạn phải viết ra chứ
Đề kiểu gì vậy