Tính giá trị của biểu thức
A=(2+1/5-2/3)+ (3-4/5+ 2/3)-(1+7/5-3/5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
a) (2/5 x 25/29) + (3/5 x 25/29)
= (50/145) + (75/145)
= 125/145
b) (5/2 x 3/7) - (3/14 : 6/7)
= 15/14 - (3/14 x 7/6)
= 15/14 - 1/2
= (30/28) - (14/28)
= 16/28
= 4/7
c) (15/4 : 5/12) - (6/5 : 11/15)
= (15/4 x 12/5) - (6/5 x 15/11)
= 180/20 - 90/55
= 9 - 18/11
= (99/11) - (18/11)
= 81/11
= 7 4/11
a) (2/3) + (20/21 x 3/2 x 7/5)
= 2/3 + (60/210)
= 2/3 + 2/7
= (14/21) + (6/21)
= 20/21
b) (5/17 x 21/32 x 47/24 x 0)
= 0
c) (11/3 x 26/7) - (26/7 x 8/3)
= (286/21) - (208/21)
= 78/21
= 3 9/21
= 3 3/7
a) (25/8) : x = 5/16
=> (25/8) x (16/5) = x
=> 4 = x
b) x + (7/15) = 6/15
=> x = (6/15) - (7/15)
=> x = -1/15
c) x : (28/49) = 7/12
=> x x (49/28) = 7/12
=> x = (7/12) x (28/49)
=> x = 1/2
a) 6 x x = (5/8) : (3/4)
=> 6x = (5/8) x (4/3)
=> 6x = 20/24
=> 6x = 5/6
=> x = (5/6) / 6
=> x = 5/36
câu,b,không,đủ,thông,tin,nhan,bạn.
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2
`a, 3/4 + 1/2 xx 7/2`
`= 3/4 + 7/4`
`=10/4`
`=5/2`
`b, 6/15 - 1/3 : 5/3`
`= 6/15 - 1/3 xx 3/5`
`= 6/15 - 3/15`
`= 3/15`
`=1/5`
`c, x-4/9 = 3/7 : 9/4`
`=> x-4/9= 3/7 xx 4/9`
`=> x-4/9= 12/63`
`=> x-4/9=4/21`
`=> x= 4/21 +4/9`
`=>x= 40/63`
`d, 7/9 xx 3/5 -1/2=1/5`
`->` sao lại bằng có `x` ko vậy ạ?
`a,`
`3/4+1/2 \times 7/2=3/4+7/4=10/4=5/2`
`b,`
`6/15 - 1/3 \div 5/3=6/15-1/5=1/5`
`c,` Tìm x?
`x-4/9=3/7 \div 9/4`
`x-4/9=4/21`
`x=4/21+4/9`
`x=40/63`
`d, 7/9x \times 3/5-1/2=1/5`
`7/9x \times 3/5=1/5+1/2`
`7/9x \times 3/5=7/10`
`7/9x=7/10 \div 3/5`
`7/9x=7/6`
`x=7/6 \div 7/9=3/2`
\(=\dfrac{3}{5}+\dfrac{8}{15}:\dfrac{2}{7}=\dfrac{3}{5}+\dfrac{28}{15}=\dfrac{9}{15}+\dfrac{28}{15}=\dfrac{37}{15}\)
\(=\dfrac{7}{8}+\dfrac{7}{3}-\dfrac{11}{12}=\dfrac{77}{24}-\dfrac{11}{12}=\dfrac{55}{24}\)
a) Cách 1:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = 8 + \frac{7}{3} - \frac{3}{5} - 5 - \frac{2}{5} - \frac{{10}}{3} + 2\\ = (8 - 5 + 2) + (\frac{7}{3} - \frac{{10}}{3}) - (\frac{3}{5} + \frac{2}{5})\\ = 5 + \frac{{ - 3}}{3} - \frac{5}{5}\\ = 5 + ( - 1) - 1\\ = 3\end{array}\)
Cách 2:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = (\frac{{120}}{{15}} + \frac{{35}}{{15}} - \frac{9}{{15}}) - (\frac{{25}}{5} + \frac{2}{5}) - (\frac{{10}}{3} - \frac{6}{3})\\ = \frac{{146}}{{15}} - \frac{{27}}{5} - \frac{4}{3}\\ = \frac{{146}}{{15}} - \frac{{81}}{{15}} - \frac{{20}}{{15}}\\ = \frac{{45}}{{15}}\\ = 3\end{array}\)
b)
\(\begin{array}{l}(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\\ = (\frac{{28}}{4} - \frac{2}{4} - \frac{3}{4}):(\frac{{40}}{8} - \frac{2}{8} - \frac{5}{8})\\ = \frac{{23}}{4}:\frac{{33}}{8}\\ = \frac{{23}}{4}.\frac{8}{{33}}\\ = \frac{{46}}{{33}}\end{array}\)
A) \(\frac{4}{5}+\frac{5}{4}-2=\frac{16}{20}+\frac{25}{20}-\frac{40}{20}\)
\(=\frac{1}{20}\)
B) \(3-\frac{2}{3}-\frac{3}{2}=\frac{18}{6}-\frac{4}{6}-\frac{9}{6}\)
\(=\frac{5}{6}\)
C) \(\frac{7}{8}-\left(\frac{1}{4}+\frac{2}{5}\right)=\frac{7}{8}-\frac{13}{20}\)
\(=\frac{35}{40}-\frac{26}{40}=\frac{9}{40}\)
D) \(\frac{9}{10}-\left(\frac{2}{5}+\frac{3}{10}\right)+\frac{7}{10}=\frac{9}{10}-\frac{7}{10}+\frac{7}{10}\)
\(=\frac{9}{10}\)
\(A=\left(2+\dfrac{1}{5}-\dfrac{2}{3}\right)+\left(3-\dfrac{4}{5}+\dfrac{2}{3}\right)-\left(1+\dfrac{7}{5}-\dfrac{3}{5}\right)\)
\(A=2+\dfrac{1}{5}-\dfrac{2}{3}+3-\dfrac{4}{5}+\dfrac{2}{3}-1-\dfrac{7}{5}+\dfrac{3}{5}\)
\(A=\left(2+3-1\right)+\left(\dfrac{1}{5}-\dfrac{4}{5}-\dfrac{7}{5}+\dfrac{3}{5}\right)+\left(-\dfrac{2}{3}+\dfrac{2}{3}\right)\)
\(A=4+\dfrac{-7}{5}+0\)
\(A=\dfrac{20}{5}+\dfrac{-7}{5}=\dfrac{13}{5}\)
Tính giá trị của biểu thức
A=(2+1/5-2/3)+ (3-4/5+ 2/3)-(1+7/5-3/5)
= (2 + ( -7/5 ) + ( 3 - 22/5) - (1 + 4/5)
= 3/5 - 7/5 + 9/5
= 5/5
= 1