cho tam giac ABC deu . gọi M thuoc BC ,goi E,Fla chan duong cao ha tu M den AB,AC. goi I la trung diem cua AM , D la trung diem cua BC.tinh so do goc DIE va DIF .chung minh DEIF la hinh thoi
help me!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) EC=EA (MC=MB; ME//AB (_|_AC))
Tứ giác AFCM: AC _|_ FM=E; EC=EA; EF=EM => AFCM là hthoi
b) FA //= MB (=CM) => AFMB là hbh (1)
AEMD là hcn (AEM^ = EAD^ = ADM^ = 90o) và O là trung điểm ED => O cũng là trung điểm AM (2)
Từ (1) và (2) => O là trung điểm FB hay B,O,F thẳng hàng
c) Ta có: EA //= DN (_|_ AB ; = MD) => ANDE là hbh
Chứng minh :
*) Vì △ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\text{t/c t/g cân}\right)\)
\(\Rightarrow AB=AC\left(\text{t/c t/g cân}\right)\)
Xét △MEB vuông tại E và △MFC vuông tại F có:
BM = MC ( gt )
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △MEB = △MFC( ch - gn )
⇒ EM = FM ( tương ứng )
*)Xét △AEM vuông tại E và △AFM vuông tại F có :
EM = FM ( cmt )
AM - cạnh chung
⇒△AEM = △AFM ( ch - cgv )
⇒ AE = AF ( tương ứng )
*)Xét △AMB và △AMC có:
AB = AC ( cmt )
AM - cạnh chung
MB = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(\text{tương ứng}\right)\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\left(\text{kề bù}\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
⇒ AM ⊥ BC ⇒ AM ⊥ EF
*) Vì \(\left\{{}\begin{matrix}AM\perp EF\\AM\perp BC\end{matrix}\right.\) \(\Rightarrow EF\text{//}BC\) ( tính vuông góc đến song song )