K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

help với mn

12 tháng 10 2021

Gọi BE, CF, AN là đường cao của TAM GIÁC ABC

Vì BE//DC⇒BH//DC(1)

CF//BD⇒CD//BH(2)

Từ (1)và(2)⇒BHCD là hình bình hành

 

22 tháng 9 2020

Bẹn tự vẽ hình nhé

Vì A' đối xứng với B qua A => AA' =AB

=. \(\overrightarrow{A'A}=\overrightarrow{AB}\)

Vì B' đối xứng với C qua B => \(\overrightarrow{B'B}=\overrightarrow{BC}\)

Vì C' đối xứng với A qua C => \(\overrightarrow{C'C}=\overrightarrow{CA}\)

Ta có: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\left(\overrightarrow{OA'}+\overrightarrow{A'A}\right)+\left(\overrightarrow{OB'}+\overrightarrow{B'B}\right)+\left(\overrightarrow{OC'}+\overrightarrow{C'C}\right)\)

\(=\left(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\right)+\left(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}\right)\)

Lại có: \(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CA}=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{AC}-\overrightarrow{AC}=0\)

\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}+0=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)

Câu 1: 

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó MN là đường trung bình

=>MN//BC và MN=BC/2(1)

Xét ΔHBC có

E là trung điểm của HB

F là trung điểm của HC

Do đó: EF là đường trung bình

=>EF//BC và EF=BC/2(2)

Từ (1) và (2) suy ra MN//EF và MN=EF

=>MNFE là hình bình hành

SUy ra: VECTO MN=VECTO EF

2 tháng 8 2019

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

30 tháng 6 2019

a,vì N là trung điểm AC nên 2BN=BA+BC ta có

MA+NB+PC=1/2BA+1/2BC+NB=1/2 (BA+BC)+NB=1/2×2×BN+NB=BN+NB=0 (TM đề bài )

b, vì M;N;P làtrung điểm AB;AC;BC

2OM+2ON+2OP=OA+OB+OA+OC+OB+OC

=2OA+2OB+2OC

suy ra OM+ON+OP=OA+OB+OC

c,

Cm tương tự

2OB=OB'+OC

2OA=OA'+OB

2OC=OA+OC'

suy ra

2OA+2OB+2OC=OA+OB+OC+OA'+OB'+OC'

suy ra OA+OB+OC=OA'+OB'+OC'