K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

\(\frac{x}{4}=\frac{y}{5}\)

=> 5x=4y

=> x=4/5y

Ma xy=180

=> 4/5y.y=180

=> y2=225

=> y= -15 ;15

Xet y=-15

=> x= 180:(-15)=-12

Xet y=15

=> x= 180:15=12

KL...

22 tháng 10 2021

Ta có :

\(4x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{4}=\frac{xy}{5.4}=\frac{180}{20}=9\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=9\Rightarrow x=45\\\frac{y}{4}=9\Rightarrow y=36\end{cases}}\)

Vậy ...

13 tháng 6 2021

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

13 tháng 6 2021

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

28 tháng 1 2019

Nháp thử trước nhé: (thường gọi là định hướng làm bài)

Thêm đk: x,y>0

Ta thử khai thác giả thiết:

Biến đổi vế trái giả thiết,ta có:

\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Leftrightarrow2x^2+\frac{y^2}{4}+\frac{1}{x^2}-1=3\)

\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=3\)

\(3\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)

\(\Leftrightarrow3\ge x^2+y+1\)\(\Leftrightarrow2\ge x^2+y\)

\(\Leftrightarrow2\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\)

Suy ra \(\Rightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le1\Leftrightarrow\frac{\left(xy\right)^2}{y}\le1\Rightarrow\left(xy\right)^2\le y\Rightarrow P=xy\le\sqrt{y}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{\sqrt{2}}{2};y=2\)

Có dấu "=" rồi => dễ tìm min hơn :v

28 tháng 1 2019

à không,nãy nhầm rồi.Thử lại:

\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=4\)

\(4\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)

\(\Leftrightarrow4\ge x^2+y+1\Leftrightarrow3\ge x^2+y\)

hay \(3\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\Leftrightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le\frac{3}{2}\)

Suy ra \(\frac{\left(xy\right)^2}{y}\le\frac{9}{4}\Rightarrow\left(xy\right)^2\le\frac{9y}{4}\Leftrightarrow xy\le\sqrt{\frac{9y}{4}}\) :v

20 tháng 1 2017

đặt t=x/y

\(\frac{3}{4}=\frac{3t-1}{t+1}\Leftrightarrow3\left(t+1\right)=4\left(3t-1\right)\Rightarrow9t=4\Rightarrow t=\frac{4}{9}=\frac{x}{y}\)

20 tháng 10 2021

\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)

Áp dụng TCDTSBN ta có:

\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)

\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)

\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)

 

26 tháng 10 2015

Theo de bai ta co :

x/-3=y/5 va y-x = 24

Ap dung tinh chat day ti so bang nhau ta co : 

x/-3=y/5=y-x/5-(-3)=24/8=3

Suy ra : 

x/-3=3=>x=-3.3=-9

y/5=3=>y=5.3=15 

Vay suy ra x=-9 va y=15