Cho các số x,y thỏa mãn : \(\frac{x}{4}\) = \(\frac{y}{5}\) và x.y bằng 180 .Ta có y=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(4x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{xy}{5.4}=\frac{180}{20}=9\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=9\Rightarrow x=45\\\frac{y}{4}=9\Rightarrow y=36\end{cases}}\)
Vậy ...
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
Nháp thử trước nhé: (thường gọi là định hướng làm bài)
Thêm đk: x,y>0
Ta thử khai thác giả thiết:
Biến đổi vế trái giả thiết,ta có:
\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Leftrightarrow2x^2+\frac{y^2}{4}+\frac{1}{x^2}-1=3\)
\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=3\)
\(3\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)
\(\Leftrightarrow3\ge x^2+y+1\)\(\Leftrightarrow2\ge x^2+y\)
\(\Leftrightarrow2\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\)
Suy ra \(\Rightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le1\Leftrightarrow\frac{\left(xy\right)^2}{y}\le1\Rightarrow\left(xy\right)^2\le y\Rightarrow P=xy\le\sqrt{y}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{\sqrt{2}}{2};y=2\)
Có dấu "=" rồi => dễ tìm min hơn :v
à không,nãy nhầm rồi.Thử lại:
\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=4\)
\(4\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)
\(\Leftrightarrow4\ge x^2+y+1\Leftrightarrow3\ge x^2+y\)
hay \(3\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\Leftrightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le\frac{3}{2}\)
Suy ra \(\frac{\left(xy\right)^2}{y}\le\frac{9}{4}\Rightarrow\left(xy\right)^2\le\frac{9y}{4}\Leftrightarrow xy\le\sqrt{\frac{9y}{4}}\) :v
đặt t=x/y
\(\frac{3}{4}=\frac{3t-1}{t+1}\Leftrightarrow3\left(t+1\right)=4\left(3t-1\right)\Rightarrow9t=4\Rightarrow t=\frac{4}{9}=\frac{x}{y}\)
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Theo de bai ta co :
x/-3=y/5 va y-x = 24
Ap dung tinh chat day ti so bang nhau ta co :
x/-3=y/5=y-x/5-(-3)=24/8=3
Suy ra :
x/-3=3=>x=-3.3=-9
y/5=3=>y=5.3=15
Vay suy ra x=-9 va y=15
\(\frac{x}{4}=\frac{y}{5}\)
=> 5x=4y
=> x=4/5y
Ma xy=180
=> 4/5y.y=180
=> y2=225
=> y= -15 ;15
Xet y=-15
=> x= 180:(-15)=-12
Xet y=15
=> x= 180:15=12
KL...