K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

thi xong rồi mà còn đăng lên làm chi 

20 tháng 12 2016

x y A B M N H I

a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:

OA = OB (GT)

góc O chung

=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)

=> OM = ON ( 2 cạnh tương ứng ) → đpcm

Ta có OA + AN = ON

OB + BM = OM

mà OM = ON ( cm trên ); OA = OB

=> AN = BM → đpcm

b) Xét ΔNOH và ΔMOH có;

ON = OM (cm trên)

OH chung

NH = MH (suy từ gt)

=> ΔNOH = ΔMOH (c.c.c)

=> góc NOH = MOH ( 2 góc tương ứng )

Do đó OH là tia pg của góc xOy → đpcm (1)

c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.

Xét ΔNAI và ΔMBI có:

góc ANI = BMI (cm trên)

AN = BM ( câu a)

góc NAI = MBI (= 90 )

=> ΔNAI = ΔMBI ( g.c.g )

=> AI = BI (2 cạnh tương ứng)

Xét ΔAOI và ΔBOI có :

AI = BI (cm trên)

góc OAI = OBI (=90)

OI chung

=> ΔAOI = ΔBOI ( c.g.c )

=> góc AOI = BOI ( 2 góc tương ứng )

Do đó OI là tia pg của xOy (2)

Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.

Chúc học tốt nguyen thi minh nguyet hihi

20 tháng 12 2016

a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:

OA = OB (gt)

O là góc chung

Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)

=> AMO = BNO (2 góc tương ứng)

OM = ON (2 cạnh tương ứng) (1)

Lại có: OB = OA (gt)

=> OM - OB = ON - OA

=> BM = AN (2)

(1) và (2) là đpcm

b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:

AN = BM (câu a)

ANH = BMH (câu a)

Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)

=> HN = HM (2 cạnh tương ứng)

Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)

=> NOH = MOH (2 góc tương ứng)

=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)

c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)

=> NOI = MOI (2 góc tương ứng)

=> OI là phân giác NOM

Mà OH cũng là phân giác NOM

Nên O,H,I thẳng hàng (đpcm)

 

18 tháng 6 2017

Ta có hình vẽ:

x O y z H A B D C

a/ Xét hai tam giác vuông OAH và OBH có:

góc AOH = góc BOH (Gt)

OH: cạnh chung

=> tam giác OAH = tam giác OBH

=> OA = OB (hai cạnh tương ứng)

Vậy tam giác OAB cân tại O

b/ Ta có: OA = OB (cmt)

Ta lại có: AH = BH (t/g OAH = t/g BOH)

=> OH là trung trực của AB

=> OH vuông góc vs AB

hay OH là đường cao của tam giác OAB

Ta có: AD vuông góc với OB

hay AD là đường cao của tam giác OAB

Mà AD cắt OH tại C

=> C là trực tâm của tam giác

=> BC vuông góc vs OA

hay BC vuông góc vs Ox

18 tháng 6 2017

Tự vẽ hình.

a) Xét \(\Delta OAH;\Delta OBH\) vuông tại A; B có:

OH chung

\(\widehat{AOH}=\widehat{BOH}\) (tia phân giác)

\(\Rightarrow\Delta OAH=\Delta OBH\left(ch-gn\right)\)

\(\Rightarrow AH=BH\)

\(\Rightarrow\Delta HAB\) cân tại H.

b) Gọi giao điểm của BC và OA là E.

Xét \(\Delta OAC;\Delta OBC:\)

\(OA=OB\) (suy ra từ câu a)

\(\widehat{AOC}=\widehat{BOC}\) (tia pg)

OC chung

\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)

\(\Rightarrow\widehat{OAC}=\widehat{OBC}\) hay \(\widehat{OAD}=\widehat{OBE}\)

Xét \(\Delta OAD;\Delta OBE\):

\(\widehat{O}\) chung

\(OA=OB\)

\(\widehat{OAD}=\widehat{OBE}\) (c/m trên)

\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)

\(\Rightarrow\widehat{ODA}=\widehat{OEB}=90^o\)

\(\Rightarrow BC\perp Ox\)

ta có: ΔOMN cân tại O 

mà OP là đường phân giác

nên P là trung điểm của MN