K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét :

\(\left(2x-3\right)^{2012}\ge0\) ( với mọi giá trị x )

\(\left(5y+2\right)^{2014}\ge0\) ( với mọi giá trị y )

\(\Rightarrow\left(2x+3\right)^{2012}+\left(5y+2\right)^{2014}\ge0\) ( nghịch lí với đề bài )

7 tháng 9 2017

Ta có: \(\left(2x-3\right)^{2012}=\left[\left(2x-3\right)^{1006}\right]^2\ge0\forall x\)

\(\left(5y+2\right)^{2014}=\left[\left(5y+2\right)^{1007}\right]^2\ge0\forall x\)

\(\Leftrightarrow\left(2x-3\right)^{2012}+\left(5y+2\right)^{2014}\ge0\forall x\)

mà theo đề có: \(\left(2x-3\right)^{2012}+\left(5y+2\right)^{2014}\le0\)

\(\Rightarrow\left(2x-3\right)^{2012}+\left(5y+2\right)^{2014}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)^{2012}=0\\\left(5y+2\right)^{2014}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\5y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{2}{5}\end{matrix}\right.\)

Vậy ...

14 tháng 8 2016

Vì \(\left(x-3\right)^{2012}\ge0\)

\(\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\hept{\begin{cases}3y-12=0\\x-3=0\end{cases}}\)\(\hept{\begin{cases}y=4\\x=3\end{cases}}\)

Vậy cặp( x,y) cần tìm là (3,4)

14 tháng 8 2016

2 số hạng đều có số mũ chẵn nên chúng luôn lớn hơn hoặc=0

Vậy ta suy ra được cả 2 số đều bằng 0

Có (x-3)2012=0  =>x-3=0  =>x=3

Có ( 3y-12)2014=0  =>3y-12=0   =>3y=12  =>y=4

Vậy x=3, y=4

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???

22 tháng 10 2015

Ta thấy:\(\left(x-3\right)^{2012}=\left(\left(x-3\right)^{1006}\right)^2\ge0\)

\(\left(3y-12\right)^{2014}=\left(\left(3y-12\right)^{1007}\right)^2\ge0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)

mà \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=>\(\left(x-3\right)^{2012}=0=>x-3=0=>x=3\)

\(\left(3y-12\right)^{2014}=0=>3y-12=0=>3y=12=>y=4\)

Vậy x=3,y=4

31 tháng 5 2015

b) Nhận xét: (2x - 5)2012 \(\ge\) 0 với mọi x

                  (3y + 4)2014 \(\ge\) 0 với mọi x

=>  (2x - 5)2012 +   (3y + 4)2014 \(\ge\) 0 với mọi x

Mà (2x - 5)2012 +   (3y + 4)2014 \(\le\) 0

=> (2x - 5)2012 +   (3y + 4)2014  = 0 

<=> (2x - 5)2012 =  (3y + 4)2014 = 0

<=> 2x - 5 = 0 và 3y + 4 = 0

+) 2x - 5 = 0 => x = 5/2

+) 3y + 4 = 0 => y = -4/3

Vậy.............

31 tháng 5 2015

a) Ta có : \(x\left(x-y\right)=\frac{3}{10}\Leftrightarrow\left(x-y\right)=\frac{3}{10.x}\) .

Ta lại có : \(y\left(x-y\right)=\frac{-3}{50}\Leftrightarrow\left(x-y\right)=\frac{-3}{50.y}\) .

\(\Rightarrow\left(x-y\right)=\frac{3}{10.x}=\frac{-3}{50.y}\Rightarrow3.50.y=-3.10.x\) .

\(\Rightarrow150.y=-30.x\Leftrightarrow\frac{x}{y}=\frac{150}{-30}=-5\).

\(\Rightarrow x-y=-5\) .

\(x.\left(-5\right)=\frac{3}{10}\Rightarrow x=-\frac{3}{50}\) .

\(y.\left(-5\right)=\frac{-3}{50}\Rightarrow y=\frac{3}{250}\).

b) \(Do:\) \(\left(2x-5\right)^{2012}\) là mũ chẵn \(\Rightarrow\left(2x-5\right)^{2012}\ge0\) .

Do : \(\left(3y+4\right)^{2014}\) cũng là mũ chẵn \(\Rightarrow\left(3y+4\right)^{2014}\ge0\) .

Để : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)

\(\Leftrightarrow\left(2x-5\right)=0\Leftrightarrow x=5:2=\frac{5}{2}\).

\(\Leftrightarrow3y+4=0\Leftrightarrow y=-4:3=\frac{-4}{3}\) .

8 tháng 9 2023

Bạn xem lại đề nhé.

a) \(A=x^2+5y^2+2xy-4x-8y+2015\)

 

\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2-y\right)^2+4y^2+2011\)

Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)

\(\Rightarrow A_{min}=2011\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

25 tháng 12 2017

ta có \(\hept{\begin{cases}\left(2x-1\right)^{2012}\ge0\\\left(3y+2\right)^2\ge0\end{cases}}\)

+ hết vào ta có VT>=0

từ bpt => VT=0 <=> x = 1/2 và y=-2/3

25 tháng 12 2017

bạn MAi thị diệu linh ơi, cho mik hỏi bài mik làm sai chỗ nào vậy bạn

5 tháng 10 2015

ta co1:(x-3)^2012+(3y-12)^2014 > 0 với mọi x;y

mà (x-3)^2012+(3y-12)^2014 < 0(theo đề bài)

=>(x-3)^2012+(3y-12)^2014 =0
=>(x-3)^2012=0;(3y-12)^2014=0

=>x=3;y=4


 

6 tháng 2 2020

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

6 tháng 2 2020

Thông cảm máy chụp đểu

15 tháng 8 2021

\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)

\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)

\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)

\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)