Tính bằng cách hợp lí:
(x-1)/(2019-2) + (x-3)/2019 = (x-5)/2021 + (x-7)/2023
Làm ơn đi mình sắp phải nộp rồi cứu với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2021 x 2021 - 2019 x 2023
= (2019 +2) x ( 2023 -2) - 2019 x 2023
= 2019 x 2023 - 2 x 2019 + 2 x 2023 - 4 - 2019 x 2023
= ( 2019 x 2023 - 2019 x 2023) + 2 x ( 2023 - 2019) - 4
= 0 + 2 x 4 - 4
= 8 - 4
= 4
2021 x 2021 - 2019 x 2023
= (2019 +2) x ( 2023 -2) - 2019 x 2023
= 2019 x 2023 - 2 x 2019 + 2 x 2023 - 4 - 2019 x 2023
= ( 2019 x 2023 - 2019 x 2023) + 2 x ( 2023 - 2019) - 4
= 0 + 2 x 4 - 4
= 8 - 4
= 4
A = 2019 \(\times\) 2021 + 2023
A = (2018 + 1).(2022 -1) + 2023
A = 2018.2022 - 2018 + 2023 > 2018.2022 - 2022
Vậy A > B
Cách 1: Nhìn qua là biết A > B :))
Cách 2: Giải cụ thể:
A = 2019 x 2021 + 2023
= 2018 x 2021 + 2021 + 2023 = 2018 x 2021 + 4044
B = 2018 x 2022 - 2022
= 2018 x 2021 + 2018 - 2022 = 2018 x 2021 - 4
⇒ A > B và lớn hơn: 4044 + 4 = 4048
2019 . x + 1/2021 . x + 1/2023 . x - 1/2023 = 2019 + 1/2021
mọi người ơi trả lời nhanh giùm mình nhé
Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$
2. Tìm x:
( x - 3 )2 - x + 3 = 0
=> x2 - 6x + 9 - x + 3 = 0
=> x2 - 7x + 12 = 0
=> ( x2 - 3x ) + ( 4x - 12 ) = 0
=> x.(x - 3) + 4.(x - 3) = 0
=> ( x - 3 ).( x + 4 ) = 0
=> x - 3 = 0 => x = 3
x + 4 = 0 => x = -4
Trl:
1.
a. \(75^2+150\text{.}25+25^2\)
\(=75^2+2\text{.}75\text{.}25+25^2\)
\(=\left(75+25\right)^2\)
\(=100^2\)
\(=10000\)
b. \(2019^2-2019.19-19^2-19.1981\)
(Đề bài có sai ko vậy???)~ hoặc lak do mk ngu quá k bt lm
2. \(\left(\text{x}-3\right)^2-\text{x}+3=0\)
\(\text{x}^2-6\text{x}+9-\text{x}+3=0\)
\(\text{x}^2-7\text{x}+12=0\)
\(\text{x}^2-3\text{x}-4\text{x}+12=0\)
\(\text{x}\left(\text{x}-3\right)-4\left(\text{x}-3\right)=0\)
\(\left(\text{x}-3\right)\left(\text{x}-4\right)=0\)
\(\orbr{\begin{cases}\text{x}-3=0\\\text{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\text{x}=3\\\text{x}=4\end{cases}}}\)
Vậy ....
#HuyềnAnh#
=(1-2)-(3-4)+(5-6)-(7-8)+...+(2021-2022)-2023
=(-1)-(-1)+(-1)-...+(-1)-2023
=0-2023
=-2023
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
=> x + 2020 = 0
=> x = -2020
Bài làm :
Ta có :
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy x=-2020
Đặt \(A=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Ta có: \(\hept{\begin{cases}\left|x-2021\right|=\left|2021-x\right|\\\left|x-2020\right|=\left|2020-x\right|\end{cases}}\)
Ta lại có: \(\hept{\begin{cases}\left|x-2018\right|+\left|2021-x\right|\ge\left|x-2018+2021-x\right|=3\\\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|=1\end{cases}}\)
\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\ge1+3=4\)
\(\Rightarrow A_{min}=4\)
Dấu '=' xảy ra khi: \(\hept{\begin{cases}\left(x-2018\right).\left(2021-x\right)\ge0\\\left(x-2019\right).\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2018\le x\le2021\\2019\le x\le2020\end{cases}}\)\(\Rightarrow2018\le x\le2020\)
Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(2018\le x\le2020\)
Nếu các bạn chưa hiểu chỗ suy ra ở chỗ dấu bằng xảy ra thì bạn hãy lập bảng xét dấu nhé ^_^
@#@@# Chúc bn hok tốt #@#@!
\(\dfrac{x-1}{2019-2}+\dfrac{x-3}{2019}=\dfrac{x-5}{2021}+\dfrac{x-7}{2023}\)
\(\Leftrightarrow\dfrac{x-1}{2017}+\dfrac{x-3}{2019}=\dfrac{x-5}{2021}+\dfrac{x-7}{2023}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2017}+1\right)+\left(\dfrac{x-3}{2019}+1\right)=\left(\dfrac{x-5}{2021}+1\right)+\left(\dfrac{x-7}{2023}+1\right)\)
=>x+2016=0
hay x=-2016