Tìm x,y biết:
\(\dfrac{x}{-2}=\dfrac{y}{-3}\) và xy=54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\dfrac{x-y}{x^3+y^3}.Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}:\dfrac{x-y}{x^3+y^3}\)
\(\Leftrightarrow Q=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\cdot\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x-y}\)
\(\Rightarrow Q=\left(x-y\right)\left(x+y\right)=x^2-y^2\)
Vậy \(Q=x^2-y^2\)
b ) \(\dfrac{x+y}{x^3-y^3}.Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}:\dfrac{x+y}{x^3-y^3}\)
\(\Leftrightarrow Q=\dfrac{3x\left(x+y\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x+y}\)
\(\Leftrightarrow Q=3x\left(x-y\right)=3x^2-3xy\)
Vậy \(Q=3x^2-3xy\)
\(\dfrac{x}{5}=\dfrac{y}{2}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
\(\Rightarrow xy=10k^2=1000\Rightarrow k=\pm10\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=50\\y=20\end{matrix}\right.\\\left\{{}\begin{matrix}x=-50\\y=-20\end{matrix}\right.\end{matrix}\right.\)
a/\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{xy}{2y}=\dfrac{54}{2y}\)
\(\Rightarrow2y\cdot y=54\cdot3\Rightarrow2y^2=162\Rightarrow y^2=\dfrac{162}{2}=81\)
Mà y > 0 (gt) => \(y=\sqrt{81}=9\Rightarrow x=\dfrac{54}{9}=6\)
Vậy..............
b/ \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{4}\cdot25=\dfrac{25}{4}\\y^2=\dfrac{1}{4}\cdot9=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{25}{4}}=\pm\dfrac{5}{2}\\y=\pm\sqrt{\dfrac{9}{4}}=\pm\dfrac{3}{2}\end{matrix}\right.\)
Vậy.............
c/ x/2 = y/3 => x/10 = y/15
y/5 = z/7 => y/15 = z/21
=> x/10 = y/15 = z/21
Áp dụng t/c của dãy tỉ số = nhau là ra....
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=k\)
Theo đề bài, ta có :
\(xy=54\Rightarrow2k.3k=54\)
\(\Rightarrow5k=54\Rightarrow k=10,8\)
Ta thấy :
\(\dfrac{x}{2}=10,8\Rightarrow x=10,8.2=21,6\)
\(\dfrac{y}{3}=10,8\Rightarrow y=10,8.3=32,4\)
Đặt :\(\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
mà \(xy=54\)
hay 2k . 3k = 54
\(\Rightarrow6.k^2=54\)
\(\Rightarrow k^2=9=\left(\pm3\right)^2\)
Với k = 3 \(\Rightarrow\) \(x=2.3=6;y=3.3=9\)
Với k = -3 \(\Rightarrow x=2.\left(-3\right)=-6;y=3.\left(-3\right)=-9\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
Đặt \(\dfrac{x}{5}=\dfrac{y}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)\(\Rightarrow xy=10k^2\)
\(\Rightarrow k^2=1\Rightarrow k=\pm1\)
Nếu k=1 \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
Nếu k=-1 \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\)
\(\dfrac{x}{-2}=\dfrac{y}{-3}\) và \(xy=54\)
Đặt: \(\dfrac{x}{-2}=\dfrac{y}{-3}=k\)
Ta có: \(x=-2k\)
\(y=-3k\)
Thay vào biểu thức \(x.y=54\)
=> Ta có: \(-2k.\left(-3k\right)=54\)
=> \(\left(-2.-3\right).k^2\)=54
=> \(6.k^2=54\)
=> \(k^2=54:6\)
=> \(k^2=9\)
=> \(k^2=3^2\) hoặc \(k^2=\left(-3\right)^2\) (*)
=> \(k=3\) hoặc \(k=-3\)
Từ (*) => \(\dfrac{x}{-2}=\dfrac{y}{-3}=3\) hoặc \(-3\)
=> x= 3.-2=-6 ~ x= -3.-2=6
y= 3.-3=9 y=-3.-3=9
Vậy...
\(\dfrac{x}{-2}=\dfrac{y}{-3}=\dfrac{xy}{\left(-2\right).\left(-3\right)}=\dfrac{54}{6}=4\)
\(x=4.\left(-2\right)=-8\)
\(y=4.\left(-3\right)=-12\)
mk ko bt đk hay sai vì mk chưa hk, thấy chưa ai giải tội bn quớ thì giải thử thoy