K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:(2 điểm): a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\). Tính giá trị của biểu thức: \(A=\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}\) b) Rút gọn biểu thức: \(B=\dfrac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\) Câu 2:(1.5 điểm): Giải phương trình: \(x^2+\dfrac{4x^2}{x^2-4x+4}=5\) Câu 3:(1.5 điểm): Tìm số tự nhiên y để...
Đọc tiếp

Câu 1:(2 điểm):
a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\). Tính giá trị của biểu thức: \(A=\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}\)
b) Rút gọn biểu thức: \(B=\dfrac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
Câu 2:(1.5 điểm):
Giải phương trình: \(x^2+\dfrac{4x^2}{x^2-4x+4}=5\)
Câu 3:(1.5 điểm):
Tìm số tự nhiên y để \(\left(y^2+1\right)x^3+\left(y^3-1\right)x\) chia hết cho 6, biết x thuộc N*
Câu 4:(2,5 điểm):
Cho ABC nhọn, ba đường cao AD, BF, CE cắt nhau tại H.
a) Giả sử HB = 6cm; HF = 3cm; CE = 11cm và CH>HE. Tính độ dài CH;EH.
b)Gọi I là giao điểm EF và AH. Cmr \(\dfrac{IH}{AI};\dfrac{HD}{AD}\)
c) Gọi K là điểm nằm giữa C và D. Kẻ AS vuông góc HK tại S. Cm SK là phân giác của góc DSI
Câu 5:(1,5 điểm):
Cho tam giác ABC, I là điểm nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB lần lượt tại các điểm D, E, F. Cmr \(\dfrac{AI}{ID}+\dfrac{BI}{IE}+\dfrac{CI}{IF}\ge6\)
Câu 6:(1.5 điểm):
Cho x, y, z > 0. Cmr \(\dfrac{x^2-z^2}{y+z}+\dfrac{z^2-y^2}{x+y}+\dfrac{y^2-x}{x+z}\ge0\)

CÁC AE GIÚP EM VỚI (Chỉ cần làm 1trong 6 bài)

0
25 tháng 9 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\left(a+b+c=2018\right)\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[\dfrac{1}{ab}+\dfrac{1}{c\left(a+b+c\right)}\right]\left(a+b\right)=0\)

\(\Leftrightarrow\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}\times\left(a+b\right)=0\)

\(\Leftrightarrow\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\b=-c\\a=-b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=2018\\a=2018\\c=2018\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{2018^{2017}}\)

14 tháng 4 2018

hình như bạn bị sai rồi

a=-c

a=-b

b=-c

=>a=-b=-(-c)=c

mà a=-c =>vô lý

NV
3 tháng 11 2021

\(1-\dfrac{1}{1+a}\ge\dfrac{2017}{b+2017}+\dfrac{2018}{c+2018}\ge2\sqrt{\dfrac{2017.2018}{\left(b+2017\right)\left(c+2018\right)}}\)

\(1-\dfrac{2017}{b+2017}\ge\dfrac{1}{1+a}+\dfrac{2018}{b+2018}\ge2\sqrt{\dfrac{2018}{\left(1+a\right)\left(b+2018\right)}}\)

\(1-\dfrac{2018}{c+2018}\ge\dfrac{1}{1+a}+\dfrac{2017}{b+2017}\ge2\sqrt{\dfrac{2017}{\left(1+a\right)\left(b+2017\right)}}\)

Nhân vế:

\(\dfrac{abc}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\ge\dfrac{8.2017.2018}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\)

\(\Rightarrow abc\ge8.2017.2018\)

NV
3 tháng 11 2021

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2.1;2.2017;2.2018\right)=...\)

5 tháng 10 2018

Vì a + b + c = 2018

\(\Rightarrow\left\{{}\begin{matrix}b+c=2018-a\\c+a=2018-b\\a+b=2018-c\end{matrix}\right.\)

Ta có: \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a}{2018-a}+\dfrac{b}{2018-b}+\dfrac{c}{2018-c}\)

\(P+3=\left(\dfrac{a}{2018-a}+1\right)+\left(\dfrac{b}{2018-b}+1\right)+\left(\dfrac{c}{2018-c}+1\right)=\dfrac{2018}{b+c}+\dfrac{2018}{c+a}+\dfrac{2018}{a+b}=2018\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+c}\right)=2018.\dfrac{2017}{2018}=2017\Rightarrow P=2014\)

6 tháng 10 2018

Ta có : \(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}\)

\(\Rightarrow3+P=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{a+c}+1\right)+\left(\dfrac{c}{a+b}+1\right)\)

\(\Rightarrow3+P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a +b+c}{a+b}\)

\(\Rightarrow3+P=\left(a+b+c\right).\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\)

\(a+b+c=2018;\) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{2017}{2018}\) \(\left(a,b\in R\right)\)

\(\Rightarrow3+P=2018.\dfrac{2017}{2018}\)

\(\Rightarrow3+P=2017\)

\(\Rightarrow P=2014\)

Vậy \(P=2014\)

8 tháng 1

pip install pygame

 

7 tháng 1 2023

2020/2019 x 2019/2018 x 2018/2017 x....................3/2
= 2020/2
= 1010 

7 tháng 1 2023

Cám ơn bạn

15 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

Dấu "=" xảy ra khi : a=b

Chứng minh tương tự như trên ; ta có :

\(\hept{\begin{cases}\frac{1}{b+c}\text{≤}\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\left(2\right)\\\frac{1}{c+a}\text{≤}\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\left(3\right)\end{cases}}\)

Cộng vế với vế của (1) ; (2) ; (3) ; ta được :

\(A\text{≤}\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\text{=}\frac{3}{2}\)

Dấu "=" xảy ra khi ;

\(\hept{\begin{cases}a=b=c\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\end{cases}}\Leftrightarrow a=b=c=1\)

Vậy Max (A) = 3/2 khi a=b=c=1

15 tháng 5 2021

quản lí tên kiểu j z

12 tháng 1 2022

cái cuối là \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\)  nha

NV
14 tháng 1 2022

\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$