K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Gọi \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k\(\Rightarrow\)\(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:\(\dfrac{ab}{cd}\)=\(\dfrac{bk.b}{dk.d}\)=\(\dfrac{b^2.k}{d^2.k}\)=\(\dfrac{b^2}{d^2}\)(vì k khác 0) 1

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)=\(\dfrac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}\)=\(\dfrac{b^2}{d^2}\)(vì k-1 khác 0) 2

Từ 1 và 2:

\(\Rightarrow\)\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\dfrac{ab}{cd}\)

Vậy \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\dfrac{ab}{cd}\)(điều cần chứng minh)

24 tháng 9 2017

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\d=ck\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2-\left(k-1\right)^2}{d^2-\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)\(\left(1\right)\)

\(VP=\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

Theo đề bài ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )

Theo tính chất dãy tỉ số bằng nhau ta có :

\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)  ( 2 )

Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )

Từ ( 2 ) , ( 3 ) 

 = > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )

 

9 tháng 8 2023

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có VT:

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)

\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)

VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) 

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

9 tháng 8 2023

Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

Vậy...

14 tháng 4 2017

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow k=\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số bằng nhau )

\(\Rightarrow k^2=\left(\dfrac{a-c}{b-d}\right)^2=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (1)

\(k^2=\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{ac}{bd}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

Vậy...

14 tháng 4 2017

Đề sai rồi bạn ạ

Phải là : Cho\(\dfrac{a}{b}=\dfrac{c}{d}\) với c≠±1. Chứng minh rằng \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Suy ra: \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=\dfrac{\left[k\left(b-d\right)\right]^2}{\left(b-d\right)^2}\)=k2 (1)

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{k^2.bd}{bd}=k^2\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)

28 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

CHÚC BẠN HỌC TỐT!!

28 tháng 9 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )

Ta đặt:

\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)

Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có: \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\left(1\right)\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{bk-b}{dk-d}=\dfrac{b\left(k-1\right)}{d\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

 

 

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

8 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

13 tháng 10 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a.b}{c.d}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+b}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

13 tháng 10 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a.b}{c.d}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)