K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Rút gọn: \(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\) Giải:: ĐK: x khác +- 1...
Đọc tiếp

Rút gọn:

\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)

Giải::

ĐK: x khác +- 1

\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)

rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.

Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.

NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!

0

1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2: Ta có: \(A=\left(\dfrac{x+2\sqrt{x}}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}-x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{1}{x-1}\)

3: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

a) Ta có: \(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}+1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}+1\right)+\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}-1\right)-2x+1}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}:\left(\dfrac{2x-1+\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)-\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}\right)\)

\(=\dfrac{x\sqrt{2}+\sqrt{x}+\sqrt{2x}+1+2x-\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{2x-1}:\dfrac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\)

\(=\dfrac{2x\sqrt{2}+2\sqrt{x}+2}{-2-2\sqrt{x}}\)

 

17 tháng 7 2021

k có câu b à b?

a: ĐKXĐ: x>1; x<>2

b: \(P=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-x+1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\dfrac{-\sqrt{x}+\sqrt{2}}{\sqrt{x}}\)

c: Khi x=3+2căn 2 thì

P=(-căn 2-1+căn 2)/(căn 2+1)=căn 2-1

a) Ta có: \(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)+\sqrt{x}\left(\sqrt{2x}+1\right)^2-2x+1}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right):\left(\dfrac{2x-1+\sqrt{x}\left(\sqrt{2x}-1\right)-\sqrt{x}\left(\sqrt{2x}+1\right)^2}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right)\)

\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+\sqrt{x}\left(2x+2\sqrt{2x}+1\right)-2x+1}{2x-1+x\sqrt{2}-\sqrt{x}-\sqrt{x}\left(2x+2\sqrt{2x}+1\right)}\)

\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-2x+2x\sqrt{x}+2\sqrt{2x}+\sqrt{x}}{2x-1+x\sqrt{2}-\sqrt{x}-2x\sqrt{x}-2\sqrt{2x}-\sqrt{x}}\)

\(=\dfrac{x\sqrt{2}+3\sqrt{2x}-2x+2x\sqrt{x}}{x\sqrt{2}-2\sqrt{2x}+2x-2\sqrt{x}-2x\sqrt{x}}\)