K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Gọi D là trung điểm BC, E là trung điểm AG. D' và E' lần lượt là hình chiếu của D và E trên đường thẳng d.

Vì G là trọng tậm tam giac ABC, D là trung điểm BC, E là trug điểm AG, suy ra AE=EG=GD.

Xét tứ giác DD'E'E, ta có : GD=GE vad GG'//EE'//DD'( cùng vuông góc với đường thẳng d ), suy ra GG' là đường trung bình của hình thang DD'E'E, suy ra 2GG'=EE'+DD'.

Chứng minh tương tự với tứ giác BB'C'C và tứ giác AA'G'G, ta được D là đường trung bình của tứ giác BB'C'C suy ra 2DD;=BB' + CC (1)',

EE' là đường trung bình của hình thang AA'G;G suy ra 2EE'=AA'+GG (2)'.

Ta có EE'+ DD' = 2 GG' ( * ) <=> 2EE' + 2DD' = 4GG'. Thay (1) và (2) vào (*) ta đc : AA' + GG' +BB' + CC' = 4GG' <=> AA' + BB' + CC' = 3GG'

13 tháng 8 2017

+) Kẻ trung tuyến AM (M thuộc BC), trên AM lấy trọng tâm G của tam giác ABC,N là trung điểm AG, kẻ đường thẳng d đi qua G cắt các cạnh AC và AB. Lấy N',M' lần lượt là hình chiếu của N và M trên d.

+)Ta có: CC'//AA'//NN'//MM'//BB'( vì cùng vuông góc với d)

   Vì G là trọng tâm tam giác ABC=>GM=1/2.AG (1)

   Lại có N là trung điểm AG (cách dựng) =>AN=NG=1/2AG (2)

  Từ (1) và (2)=>AN=NG=GM(=1/2.AG)

Xét tam giác NGN' và tam giác MGM' có: góc NN'G=góc MM'G (=90độ) ; NG=MG (C/m trên) ; gócNGN'= góc MGM' (2 góc đối đỉnh)

=>tam giác NGN'= tam giác MGM' (cạnh huyền-góc nhọn) =>NN'=MM' (2 cạnh tương ứng)

Xét tam giác AA'G có: N là trung điểm AG,NN'//AA' (C/m trên)=> N' là trung điểm A'G=>NN' là đường trung bình của tam giác AA'G

=>NN'=1/2.AA' (tính chất đường TB của tam giác), hay MM' =1/2.AA' =>2MM'=AA' (*)

Xét tứ giác CC'B'B có CC'//BB'=> Tư giác CC'B'B là 1 hình thang. Lại có M là trung điểm của BC,MM'//CC'//BB' (C/m trên)

=>M' là trung điểm B'C'=> MM' là đường trung bình của hình thang CC'B'B=>MM'=1/2.(BB'+CC')=>2MM'=BB'+CC'

Từ (*)=>2MM'=BB'+CC'=AA' .  Vậy AA'=BB'+CC'

                                                                    

10 tháng 12 2018

19 tháng 9 2021

Gọi E là trung điểm KL; I là trung điểm AG

\(\left\{{}\begin{matrix}KE=EL\\BD=DC\end{matrix}\right.\Rightarrow ED\) là đtb hthang \(BCLK\left(BK//LC.do.cùng.\perp KL\right)\)

\(\Rightarrow ED=\dfrac{BK+CL}{2}\Rightarrow2ED=BK+CL\left(1\right)\)

Vì G là trọng tâm tam giác ABC nên \(GD=\dfrac{1}{2}AG\)

Mà \(AI=IG=\dfrac{1}{2}AG\) nên \(GD=AI=IG\)

Ta có \(ED//BK//LC\left(t/c.đtb\right)\Rightarrow ED\perp KL\left(BK\perp KL\right)\)

Áp dụng định lí Ta-lét cho \(AH//ED\left(\perp KL\right)\) ta có

\(\dfrac{AH}{ED}=\dfrac{AG}{GD}=2\Rightarrow AH=2ED\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AH=BK+CL\)

1 tháng 3 2022

gfvfvfvfvfvfvfv555