K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

A=\([\)(x+y)(x+4y)\(][\)(x+2y)(x+3y)]+y4

=(x2+4xy+xy+4y2)(x2+3xy+2xy+6y2)+y4

=(x2+5xy+4y2)(x2+5xy+6y2)+y4

=(x2+5xy+5y2-y2)(x2+5xy+5y2+y2)+y4

=(x2+5xy+5y2)2-y4+y4

=(x2+5xy+5y2)2

vậy A là số chính phương vs \(\forall\) x,y\(\in\)R

24 tháng 9 2021

\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\\ A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2\right)^2-y^4+y^4=\left(x^2+5xy+5y^2\right)^2\left(Đpcm\right)\)

22 tháng 1 2017

ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4

=(x+y)(x+4y)(x+2y)(x+3y)+y^4

=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

đặt x^2+5xy=a

<=>A=a(a+2y^2)+y^4

=a^2+2.a.y^2+y^4

=(a+y^2)^2

là scp

2 tháng 8 2023

Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)

12 tháng 3 2017

ghép 2 số đầu và cuối làm 1 cặp rồi phân tích ra .

2 số ở giữa làm 1 cặp rồi phân tích ra .
sau đó đặt x^2+5xy+4y^2 là t
laijtieeps tục phân tích rồi dùng hằng đẳng thức là lm đc

15 tháng 12 2020

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

  =[(x+y)(x+4y)] [(x+2y)(x+3y)]+y4

  =(x2+5xy+4y2) (x2+5xy+6y2)+y4

Gọi x2+5xy+4y2=a

\(\Rightarrow\)a(a+2y2)+y4

  =a2+2ay2+y4

  =(y2)2+2ay2+a2

  =(a+y2)2 

  =(x2+5xy+4y2+y2)2

  =(x2+5xy+5y2)2 là SCP

27 tháng 3 2017

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4=t^2\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên:

\(x^2\in Z,5xy\in Z,5y^2\in Z\)

\(\Leftrightarrow x^2+5xy+5y^2\in Z\)

Vậy \(A\) là số chính phương (Đpcm)

23 tháng 3 2016

chứng minh hả !

lớp mấy đây ?

23 tháng 3 2016

mk hỏi hơi ngu !

22 tháng 10 2020

N = ( x - y )( x - 2y )( x - 3y )( x - 4y ) + y4

= [ ( x - y )( x - 4y ) ][ ( x - 2y )( x - 3y ) ] + y4

= ( x2 - 5xy + 4y2 )( x2 - 5xy + 6y2 ) + y4

Đặt t = x2 - 5xy + 5y2

N = ( t - y2 )( t + y2 ) + y4

    = t2 - y4 + y4

    = t2 = ( x2 - 5xy + 5y2 )2

Vì x, y thuộc Z => x2 thuộc Z ; -5xy thuộc Z ; 5y2 thuộc Z

=> ( x2 - 5xy + 5y2 )là một số chính phương

=> đpcm

22 tháng 10 2020

\(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)

\(=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)

\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)

Đặt \(x^2-5xy+5y^2=t\)

\(\Rightarrow\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\)

\(=\left(x^2-5xy+5y^2\right)^2\)

Vì \(x,y\inℤ\)\(\Rightarrow\left(x^2-5xy+5y^2\right)^2\)là số chính phương

hay \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương ( đpcm )

30 tháng 10 2015

=[(x+1)(x+6)][(x+3)(x+4)]+9

Sau khi nhân thì sẽ có kết quả sau : =(x2+7x+6)(x2+7x+12)+9 . Sẽ đặt ẩn phụ là (x2+7x+6) = a . suy ra a2+6a+9=(x+3)rồi lại thay ngược lại thì có kết quả cuối cùng là (x2+7x+9)2=>M là số chính phương