Cho lục giác đều ABCDEF có M,N,P lần lượt là trung điểm của AB,CD,EF
a. Chứng minh : vt IM + vt IN + vt IP=1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF) với mọi I
b. Tìm G để vt GA + vt GB + vt GC + vt GD + vt GE + vt GF=vt 0
c. Gọi G1,G2,G3,G4,G5,G6 lần lượt là trọng tâm của tam giác ABC , tam giác DEF , tam giác BCD , tam giác EFA , tam giác CDE , tam giác FAB. Chứng minh G1G2 , G3G4 , G5G6 đồng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mà ,mình bỏ chữ vecto nha
IA+IB+IC+ID=IM+MA+IM+MB+IN+NC+IN+ND
=2IM+2IN+MA+MB+NC+ND
=0
a, Gọi D là trung điểm của MN \(\Rightarrow\overrightarrow{MN}=2\overrightarrow{MD}\).
Ta có: \(\overrightarrow{NA}+3\overrightarrow{NC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AN}=3\overrightarrow{NC}\) \(\Leftrightarrow AN=3NC\)
\(\overrightarrow{MD}=\overrightarrow{AD}-\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)-\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AN}-\frac{1}{2}\overrightarrow{AM}\)
\(\overrightarrow{MD}=\frac{3}{8}AC-\frac{1}{4}\overrightarrow{AB}\Rightarrow\overrightarrow{MN}=\frac{3}{4}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)
a) Cm: vt IM + vt IN + vt IP=1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF) với mọi I
2vt IM+2vt IN +2vt IP =( vt IA+vt IB )+( vt IC +vt ID )+ (vt IE +vt IF)
<=>2(vt IM + vt IN + vt IP )= vt IA + vt IB + vt IC + vt ID + vt IE + vt IF
<=>vt IM + vt IN + vt IP = 1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF)