K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a:Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

Suy ra: AH=IK

b: Ta có: AIHK là hình chữ nhật

nên AIHK là tứ giác nội tiếp đường tròn đường kính AH

Gọi E là giao điểm của AM và KI

Xét (AH/2) có 

\(\widehat{AKI}\) là góc nội tiếp chắn cung AI

\(\widehat{AHI}\) là góc nội tiếp chắn cung AI

Do đó: \(\widehat{AKI}=\widehat{AHI}\)

=>\(\widehat{AKE}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>\(\widehat{C}=\widehat{EAK}\)

\(\widehat{AKE}+\widehat{KAE}=\widehat{C}+\widehat{B}=90^0\)

=>\(\widehat{AEK}=90^0\)

hay AM\(\perp\)IK 

24 tháng 10 2018

Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có 

MAK = MCK, OKA = OAK nên

MAK + OKA = MCK + OAK = 90 độ

Do đó AM vuông góc IK

18 tháng 11 2018

bạn ơi bạn làm như giải ý 

b: Xét tứ giác AIHK có 

\(\widehat{KAI}=\widehat{AIH}=\widehat{AKH}=90^0\)

Do đó: AIHK là hình chữ nhật

Suy ra: IK=AH

2 tháng 12 2015

I là hình chiếu của H trên AB => HI vuông góc vs AB => góc AIH = 900
tương tự ta có: K là hình chiếu của H trên AC => HK vuông góc vs AC => góc AKH = 900
Tứ giác AIHK  là hình chữ nhật vì có BAC=ADH=HKA=900
=>IO=OA(cho O là giao điểm giữa 2 đường chéo AH và IK)
=>góc IAO=góc AIO(1)
Có AM là đường trung tuyến ứng vs cạnh huyền(M là trung điểm BC) của tam giác vuông ABC
 => tam giác ACM cân tại M => góc MAC = góc MCA  (2)
Mặt khác góc MCA= góc IAO vì cùng phụ vs AH.(3)
Từ (1),(2) và (3) => góc IAO= góc MAC= góc MCA
Tam giác AIK vuông tại A nên góc AKI+ góc AIK=900  =>góc MAK + góc IKA =900
Gọi giao điểm của AM vs IK là F thì từ tam giác AKF ta có  góc AFK =900 hay AM vuông góc vs IK

tự vẽ hình nhé ^,^
 

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(Gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{BC}{5}\)

Ta có: AD+CD=AC(D nằm giữa A và C)

nên AC=3+5=8(cm)

Đặt \(\dfrac{AB}{3}=\dfrac{BC}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\BC=5k\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(3k\right)^2+8^2=\left(5k\right)^2\)

\(\Leftrightarrow9k^2+64=25k^2\)

\(\Leftrightarrow16k^2=64\)

\(\Leftrightarrow k^2=4\)

hay k=2

Suy ra: \(\left\{{}\begin{matrix}AB=3\cdot k=3\cdot2=6\left(cm\right)\\BC=5\cdot k=5\cdot2=10\left(cm\right)\end{matrix}\right.\)

Vậy: AB=6cm; BC=10cm

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là tia phân giác của góc BAC

b: Xét ΔAIH vuông tại H và ΔAKH vuông tại K có

AH chung

\(\widehat{IAH}=\widehat{KAH}\)

Do đó: ΔAIH=ΔAKH

Suy ra: AI=AK

c: Ta có: AI=AK

nên A nằm trên đường trung trực của IK(1)

ta có: MI=MK

nên M nằm trên đường trung trực của IK(2)

ta có: HI=HK

nên H nằm trên đường trung trực của IK(3)

Từ (1), (2) và (3)suy ra A,M,H thẳng hàng