B1: chứng minh với mọi n thuộc N thì:
n4 + 6n3 + 11n2 +6n chia hết cho 24
B2: chứng minh với mọi n chẵn nhỏ hơn 4 và n thuộc Z thì
n4 + 4n3 - 4n2 + 16n chia hết cho 384
B3: tìm x, y sao cho
a) x + 2y = xy + 2
b) xy = x + y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết
b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
a) 3xy + x + 2y = 0
=> x.(3y + 1) = -2y
=> \(x=\frac{-2y}{3y+1}\)
Mà x nguyên => -2y chia hết cho 3y + 1
=> 2y chia hết cho 3y + 1
=> 6y chia hết cho 3y + 1
=> 6y + 2 - 2 chia hết cho 3y + 1
=> 2.(3y + 1) - 2 chia hết cho 3y + 1
Do 2.(3y + 1) chia hết cho 3y + 1 => 2 chia hết cho 3y + 1
=> \(3y+1\in\left\{1;-1;2;-2\right\}\)
Mà 3y + 1 chia 3 dư 1 => 3y + 1 \(\in\left\{1;-2\right\}\)
+ Với 3y + 1 = 1 thì 3y = 0 => y = 0
=> \(x=\frac{-2.0}{3.0+1}=\frac{0}{1}=0\)
+ Với 3y + 1 = -2 thì 3y = -3 => y = -1
=> \(x=\frac{-2.\left(-1\right)}{3.\left(-1\right)+1}=\frac{2}{-3+1}=\frac{2}{-2}=-1\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;0) ; (-1;-1)
b) Ta có:
10n + 45n - 1
= 10n - 1 - 9n + 54n
= 999...9 - 9n + 54n
(n c/s 9)
= 9.(111...1 - n) + 54n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà tổng các chữ số 111...1 là n
(n c/s 1)
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 54n chia hết cho 27
(n c/s 1)
=> 10n + 45n - 1 chia hết cho 27 (đpcm)
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
B1: Giải:
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)