tìm số nguyen x: \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
\(\Leftrightarrow\dfrac{15}{16}:x=1-\dfrac{1}{12}=\dfrac{11}{12}\)
\(\Leftrightarrow x=\dfrac{15}{16}:\dfrac{11}{12}=\dfrac{15}{16}\cdot\dfrac{12}{11}=\dfrac{45}{44}\)
`#040911`
`a)`
`3 1/3 x + 16 3/4 = -13,25`
`=> 3 1/3 x = -13,25 - 16 3/4`
`=> 3 1/3 x = -30`
`=> x = -30 \div 3 1/3`
`=> x =-9`
Vậy, `x = -9`
`b)`
`3 2/7*x - 1/8 = 2 3/4`
`=> 3 2/7x = 2 3/4 + 1/8`
`=> 3 2/7x = 23/8`
`=> x = 23/8 \div 3 2/7`
`=> x = 7/8`
Vậy, `x = 7/8`
`c)`
`x \div 4 1/3 = -2,5`
`=> x = -2,5 * 4 1/3`
`=> x = -65/6`
Vậy, `x = -65/6`
`d)`
`( (3x)/7 + 1) \div (-4) = (-1)/28`
`=> (3x)/7 +1 = (-1)/28 * (-4)`
`=> (3x)/7 + 1 = 1/7`
`=> (3x)/7 = 1/7 - 1`
`=> (3x)/7 = -6/7`
`=> 3x = -6`
`=> x = -6 \div 3`
`=> x = -2`
Vậy, `x = -2.`
a
=>10/3 . x + 16 + 3/4 = -13,25
=>10/3 x + 3/4 = -29,25
=>10/3 x = -30
=>x=-30 : 10/3
=>x=-30 . 3/10
=>x=-9
b.
=>23/7 x - 1/8 = = 11/4
=>23/7 x = 11/4 + 1/8
=>23/7 x= 22/8 + 1/8
=>23/7 x= 23/8
=>x=23/8 : 23/7
=>x=23/8 . 7/23
=>x=7/8
c.
=>x : 13/3 =-5/2
=>x=-5/2 . 13/3
=>x=-65/6
d.
=>3x/7 +1 = (-1/28) . (-4)
=>3x/7 + 1 = 1/7
=>3x/7 = -6/7
=>3x=-6
=>x=-2
\(\dfrac{1}{x-1}-\dfrac{1}{x+1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{x+1-x+1}{x^2-1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{2}{x^2-1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{2\left(x^2+1-x^2+1\right)}{x^4-1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{4}{x^4-1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{4\left(x^4+1-x^4+1\right)}{x^8-1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{8}{x^8-1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{8\left(x^8+1-x^8+1\right)}{x^{16}-1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{16}{x^{16}-1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{16\left(x^{16}+1-x^{16}+1\right)}{x^{32}-1}\)
\(=\dfrac{32}{x^{32}-1}\)
\(A=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(A=\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1+x\right)\left(1-x\right)}\right)+...+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
Tiếp tục các bước như ở dòng 2 và 3 ta có :
\(A=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1+x^{16}\right)\left(1-x^{16}\right)}\)
\(A=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}\)
\(A=\dfrac{32}{1-x^{32}}\)
\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)
\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{32}{1-x^{32}}\)
Gọi \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)
VẬy x là một lũy thừa của 2. Đặt x = 2y , ta có:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^y}\)
\(\Rightarrow2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}\)
\(\Rightarrow2A-A=1+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^8}\right)\)
\(=A-\dfrac{1}{2^y}\)
Vậy \(1-\dfrac{1}{2^y}=\dfrac{1023}{1024}\Leftrightarrow\dfrac{1}{2^y}=\dfrac{1}{1024}\Leftrightarrow2^y=1024\Rightarrow x=1024\)
Vậy x = 1024
sau đăng vào box toán nhe bạn