CMR: Mọi số tự nhiên lớn hơn 5 đều biểu diễn được dưới dạng tổng của ba số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho số tự nhiên n>5, ta sẽ chứng minh rằng n viết được dưới dạng tổng của 3 số nguyên tố. Xét:
- Trường hợp 1: Nếu n chẵn thì n=2+m với m chẵn, m>3. vì số chẵn >2 kế tiếp là 4 nên dù là m>3 thì m vẫn viết được dưới dạnng tổng 2 số nguyên tố.
- Trường hợp 2: nếu n lẻ thì n=3+m với m chẵn, m>2. Theo mệnh đề Euler, m chẵn, m>2 nên m viết được dưới dạng tổng hai số nguyên tố. Do đó n viết được dưới dạng tổng của 3 số nguyên tố
Cho số tự nhiên n > 5 , ta sẽ chứng minh rằng n viết được dưới dạng tổng của 3 số nguyên tố . Xét 2 trường hợp :
a) Nếu n chẵn thì n = 2 + m với m chẵn , m > 3 .
b) Nếu n lẻ thì n = 3 + m với m chẵn , m > 2 .
Theo mệnh đề Ơ - le , m chẵn , m > 2 nên m viết được dưới dạng tổng hai số nguyên tố . Do đó n viết được dưới dạng tổng của 3 số nguyên tố .
Ta phân tích lời nói của Bình trước :
lấy ví dụ 1 số là 7 . bằng :
chỉ có thể lập được từ 2 số 2 và 5 , không thể lập từ 3 số
vậy Bình nói sai
Ta phân tích lời nói của An :
lấy ví dụ 1 số là 8 .
vậy cũng không lập được .
cho nên cả hai bạn đều sai
đây là theo cách giải và hiểu của mình .
An nói với Bình :"Tớ phát hiện ra một điều rất hay: mọi số tự nhiên lớn hơn 5 đều biểu diễn được dưới dạng tống của ba số nguyên tố."
Bình trả lời :"Theo tớ thì mọi số tự nhiên chẵn lớn hơn 2 đều biểu diễn được dưới dạng tống của ba số nguyên tố."
Ta phân tích lời nói của Bình trước :
lấy ví dụ 1 số là 7 . bằng :
chỉ có thể lập được từ 2 số 2 và 5 , không thể lập từ 3 số
vậy Bình nói sai
Ta phân tích lời nói của An :
lấy ví dụ 1 số là 8 .
vậy cũng không lập được .
cho nên cả hai bạn đều sai
đây là theo cách giải và hiểu của mình .
đúng không ?
a) 6=2+2+2
7=2+2+3
8=2+3+3
b) 30= 13+17= 7+23
32=3+29 = 19+13
a) Chứng minh: gọi số tự nhiên đó là n (n>5)
+) Nếu n chẵn => n= 2+m trong đó m chẵn ;m>3
+) Nếu n lẻ => n= 3+m trong đó m lẻ; m> 2
Theo mệnh đề Euler => m được viết dưới dạng tổng quát của 2 số nguyên tố
=> n là tổng quát của các số nguên tố
6= 3+3
7= 2+5
8= 3+5 (dựa vào số lẻ và chẵn như tổng quát trên)
b) CM như câu trên:
30= 7+23
32=19+13
n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+) Với n = 6k + 1 (k ∈ N*)
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Với n = 6k + 3 (k ∈ N*)
Viết n = (3k +1) + (3k +2)
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k ∈ N*)
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k ∈ N*)
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau
+) Với n = 6k + 4 (k ∈ N*)
Viết n = (6k +1 ) + 3
Dễ có: 6k +1 và 3 nguyên tố cùng nhau
=> ĐPCM
n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+) Với n = 6k + 1 (k $\in$∈ N*)
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Với n = 6k + 3 (k $\in$∈ N*)
Viết n = (3k +1) + (3k +2)
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k $\in$∈ N*)
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k $\in$∈ N*)
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau
+) Với n = 6k + 4 (k $\in$∈ N*)
Viết n = (6k +1 ) + 3
Dễ có: 6k +1 và 3 nguyên tố cùng nhau
=> ĐPCM
n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+) Với n = 6k + 1 (k $\in$∈ N*)
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Với n = 6k + 3 (k $\in$∈ N*)
Viết n = (3k +1) + (3k +2)
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k $\in$∈ N*)
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k $\in$∈ N*)
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau
+) Với n = 6k + 4 (k )
Viết n = ( 6k + 1 ) + 3
Dễ có : 6k + 1 và ba nguyên tố cùng nhau
Cai link nay se giup ich cho cau!
http://olm.vn/hoi-dap/question/94431.html