chứng minh:4n 15n-10 chia hết cho 9 với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
chứng minh theo pp quy nạp
chứng minh đúng với n=1
giả sử đúng với n=k
cần chứng minh đúng với n=k+1
Thử n = 1 \(\Rightarrow4+15-10=9⋮9\).Vậy mệnh đề đúng với n = 1
Giả sử n = K đúng với mọi n thuộc N
\(\Rightarrow4^K+15K-10⋮9\)
Giờ ta cần chứng minh mệnh đề cũng đúng với n = K + 1
Thật vậy ta có :\(\Rightarrow4^{K+1}+15\left(K+1\right)-10\)
\(=4^K.4+15K+5\)
\(=4^K.4+4.15K-4.10+45\)
\(=4\left(4^K+15K-10\right)+5.9\)
Do \(4^K+15K-10⋮9\left(B2\right)\)
\(45⋮9\)
\(\Rightarrow\)Mệnh đề cũng đúng với n = K + 1
Vậy đpcm.
PP quy nạp toán học lớp 11