K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

\(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\)

\(\Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)

Ta có: \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

\(\Leftrightarrow5x=22\)

hay \(x=\dfrac{22}{5}\)

b: =>4x^2+8x-8x^2+5x-10=0

=>-4x^2+13x-10=0

=>x=2 hoặc x=5/4

c: =>2x^2-5x+6x-15=2x^2+8x

=>x-15=8x

=>-7x=15

=>x=-15/7

d: =>3x^2+15x-2x-10-3x^2-12x=5

=>x-10=5

=>x=15

e: =>x^2-3x+2x^2+2x=3x^2-12

=>-x=-12

=>x=12

8 tháng 9 2021

\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)

\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)

Bài 4:

a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)

\(\Leftrightarrow6x-9-2x+4=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

hay \(x=\dfrac{13}{3}\)

c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

hay x=1

17 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  

2:

a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8

=>x^2-x-12-x^2+4x+5=8

=>3x-7=8

=>3x=15

=>x=5

b: =>3x^2+3x-2x-2-3x^2-21x=13

=>-20x=15

=>x=-3/4

c: =>x^2-25-x^2-2x=9

=>-2x=25+9=34

=>x=-17

d: =>x^3-1-x^3+3x=1

=>3x-1=1

=>3x=2

=>x=2/3

13 tháng 7 2016

\(a,5\left(3x+5\right)-4\left(2x-3\right)=5x+8\left(2x+12\right)+1\)

\(\Rightarrow5\left(3x+5\right)-4\left(2x-3\right)-5x-8\left(2x+12\right)-1=0\)

\(\Rightarrow15x+25-8x+12-5x-16x-96-1=0\)

\(\Rightarrow-14x-60=0\)

\(\Rightarrow-14x=60\) \(\Rightarrow x=-\frac{60}{14}=\frac{-30}{7}\)

\(b,\left(2x+3\right)\left(x-4\right)-\left(3x-5\right)\left(x-4\right)=\left(5-x\right)\left(x-2\right)\)

\(\Rightarrow2x^2+3x-8x-12-3x^2+5x+12x-20=5x-x^2-10+2x\)

\(\Rightarrow-x^2+12x-32=7x-x^2-10\)

\(\Rightarrow-x^2+12x-32-7x+x^2+10=0\)

\(\Rightarrow5x-22=0\)

\(\Rightarrow5x=22\Rightarrow x=\frac{22}{5}\)

13 tháng 7 2016

a) 5(3x+5)-4(2x-3) = 5x+8(2x+12)+1

15x + 25 - 8x + 12 = 5x + 16x + 96 + 1

15x - 8x - 5x - 16x = 96 + 1 - 25 - 12

-14x = 60

x = \(\frac{60}{-14}\)

x = \(-\frac{30}{7}\)

b) (2x+3)(x-4)-(3x-5)(x-4) = (5-x).(x-2)

(x - 4)(2x + 3 - 3x +5) = 5x - 10 - x2 + 2x

(x - 4)[(2x - 3x) + (3 + 5)] = 5x - 10 - x2 + 2x

(x - 4)(-x + 8) = 5x - 10 - x2 + 2x

-x2 + 8x + 4x - 32 = 5x - 10 - x2 + 2x

(-x2 + x2) + (8x + 4x - 5x - 2x) = -10 + 32

5x = 22

x = \(\frac{22}{5}\) 

2 tháng 7 2018

(x+2)(x+3)-(x-2)(x+5)=0

=> x2+5x+6-x2-3x+10=0

=>2x+16=0 

 =>2x=-16

=>x=-8

`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)

`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`

`C(x)= -3x^4-2x^3+x^2+x+5`

 

`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)

`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`

`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`

`D(x)=-x^4-4x^3-4x+7`

 

`P(x)=C(x)+D(x)`

`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`

`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`

`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`

`P(x)=-4x^4-6x^3+x^2-3x+12`

 

`Q(x)=C(x)-D(x)`

`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`

`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`

`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`

`Q(x)=-2x^4+2x^3+x^2+5x-2`

 

`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`

`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`

`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`

`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`

`F(x)=5x+10`

Đặt `5x+10=0`

`\Leftrightarrow 5x=0-10`

`\Leftrightarrow 5x=-10`

`\Leftrightarrow x=-10 \div 5`

`\Leftrightarrow x=-2`

Vậy, nghiệm của đa thức là `x=-2.`

a: =>x^2-25-x^2-3x=10

=>-3x=35

=>x=-35/3

b: =>4x^2-9-4(x^2+4x+4)=5

=>4x^2-9-4x^2-16x-16-5=0

=>-16x-30=0

=>x=-15/8

c: =>9x^2+45x-9x^2+4=7

=>45x=3

=>x=1/15

d: =>x^3+3x^2+3x+1-x^3-3x^2+5x=8

=>8x=7

=>x=7/8

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}

3 tháng 8 2023

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)

\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)

\(\Rightarrow x\left(6x-2-15-6x\right)\)

\(\Rightarrow-16x=0\)

\(\Rightarrow x=0\)

d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)

\(\Rightarrow9x^2-4-4x+4=0\)

\(\Rightarrow9x^2-4x=0\)

\(\Rightarrow x\left(9x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)

3 tháng 8 2023

\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)