Chứng tỏ rằng: 66a+39b chia hết cho3 với mọi a,b thuộc N ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
66a + 39b + 63c
3.22.a+3.13.b+3.31.c
3(22a+13b+31c) chia hết cho 3 suy ra 66a +39b+63c chia hết cho 3
Nếu trong a,b có 1 số chẵn
=> Bài toán được chứng minh
Nếu a,b đều là số lẻ
a + b là số chẵn
=> Bài toán được chứng minh
=> Điều phải chứng minh
Giả sử a = 1
111 không chia hết cho 33
Vậy đề bạn chưa đúng
a) nếu n là số lẻ
n+3 sẽ bằng 1 số lẻ => (n+3).(n+6) chia hết cho 2
nếu n là số chẵn
n+6 sẽ bằng 1 số chẵn=>(n+3).(n+6) chia hết cho 2
a) ( n + 3 ) . ( n + 6 )
+) Xét n chẵn => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
+) Xét n lẻ => n + 3 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
+) Xét n bằng 0 => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
Vậy với mọi n thì ( n + 3 ) . ( n + 6 ) luôn chia hết cho 2
b) n . ( n + 5 )
+) Xét n chẵn => n chia hết cho 2 => n ( n + 5 ) chia hết cho 2
+) Xét n lẻ => n + 5 là số chẵn => n ( n + 5 ) chia hết cho 2
+) Xét n bằng 0 => n ( n + 5 ) = 0 => n ( n + 5 ) chia hết cho 2
Vậy với mọi n thì n ( n + 5 ) luôn chia hết cho 2
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5