K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n.27+3^n.3+2^n.8+2^n.4\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

1 tháng 7 2021

a) Ta có : n3 + 3n2 + 2n

= n(n2 + 3n + 2) 

= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)

b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299

= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)

= 31 + 25.31 + .. + 295.31

= 31(1 + 25 + ... + 295\(⋮31\)(đpcm) 

c) Ta có 49n + 77n - 29n - 1

= (49n - 1) + (77n - 29n

= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm) 

\(3^{n+1}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

20 tháng 8 2018

\(x\left(x-1\right)-3x+3=0\)

<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)

<=> \(\left(x-3\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)

\(3x\left(x-2\right)+10-5x=0\)

<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)

<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)

<=> \(\left(3x-5\right)\left(x-2\right)=0\)

<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

học tốt

8 tháng 8 2018

a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)

b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp

=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6

c, \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)

=>a^3+b^3+c^3=3abc

22 tháng 8 2017

\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)

NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)

\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)

...

Đến đây thì bí rồi nhé

28 tháng 9 2016

Giả sử nvà n là số lẻ

Ta có n2 = n.n 

Vì n lẻ nên n.n là số lẻ 

=> n2 lẻ (trái giả thiết)

Vậy n2 lẻ thì n lẻ

bài còn lại làm tương tự

28 tháng 9 2016

1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.

Khi đó, n = 2k (k thuộc N*)

Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.

Vậy điều phản chứng sai. Ta có đpcm

2/ Tương tự.

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm