. Rút gọn biểu thức:
a) (x + y)2 + (x - y)2;
b) 2(x - y)(x + y) +(x - y)2 + (x + y)2;
c) (x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(3x-1\right)^2+\left(x+3\right)\left(2x-1\right)\)
\(=9x^2-6x+1-2x^2+x-6x+3\)
\(=7x^2-11x+4\)
a) Ta có: \(\left(x-\dfrac{1}{1-x}\right):\dfrac{x^2-x+1}{x^2-2x+1}\)
\(=\left(x+\dfrac{1}{x-1}\right):\dfrac{x^2-x+1}{\left(x-1\right)^2}\)
\(=\dfrac{x^2-x+1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{x^2-x+1}\)
\(=x-1\)
b) Ta có: \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\left(1-\dfrac{x}{y}\right)\cdot\dfrac{y^2}{x^3-y^3}\)
\(=\left(\dfrac{y^2}{y^2}+\dfrac{xy}{y^2}+\dfrac{x^2}{y^2}\right)\cdot\left(\dfrac{y-x}{y}\right)\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2}{y^2}\cdot\dfrac{-\left(x-y\right)}{y}\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-1}{y}\)
Câu 3:
a: \(49^2=2401\)
b: \(51^2=2601\)
c: \(99\cdot100=9900\)
a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)
b \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)
a)` x(x - y) + y(x + y) `
`=x^2-xy+xy+y^2`
`=x^2+y^2`(1)
thay x= -6 ; y= 8 vào 1 ta đc
\(\left(-6\right)^2+8^2=36+64=100\)
b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `
`=x^3-xy-x^3-xy+yx^2-xy`
`=\(-3xy+yx^2\)(2)
thay `x= 1/2 và y = -100` ta đc
\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)
Lời giải:
Áp dụng HĐT: $(a-b)^3=a^3-b^3-3ab(a-b)$ cho cả hai bạn.
a.
$M=x^3-1-3x(x-1)-3x(x-1)^2+3x^2(x-1)+x^3$
$=2x^3-1+3x(x-1)[-1-(x-1)+x]$
$=2x^3-1+3x(x-1).0=2x^3-1$
b.
$D=[(x-y)-x]^3=-y^3$
a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1\)
\(=\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot1+1^2\)
\(=\left[\left(2x+1\right)+1\right]^2\)
\(=\left(2x+2\right)^2\)
b) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)
\(=\left(x-y-x-y\right)^2\)
\(=\left(-2y\right)^2\)
\(=4y^2\)