BT1: Tìm x, biết:
5) \(\dfrac{1}{2}+\dfrac{1}{3}< x\le1\dfrac{1}{2}+\dfrac{1}{5}\left(x\in Z\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2-\dfrac{1}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=-\dfrac{3}{40}+\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}\)
\(\Leftrightarrow\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}:\dfrac{1}{2}\)
\(\Leftrightarrow\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{5}=\dfrac{1}{2}\\\dfrac{1}{3}x-\dfrac{1}{5}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{7}{10}\\\dfrac{1}{3}x=-\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{21}{10}\\x=-\dfrac{9}{10}\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt!
\(\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2-\dfrac{1}{5}=-\dfrac{3}{40}\\ \dfrac{1}{2}\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=-\dfrac{3}{40}+\dfrac{1}{5}\\ \dfrac{1}{2}\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}\\ \left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}:\dfrac{1}{2}\\\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{4}\\ \left(\dfrac{1}{3}x-\dfrac{1}{5}\right)=\left(\pm\dfrac{1}{2}\right)^2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{5}=\dfrac{1}{2}\\\dfrac{1}{3}x-\dfrac{1}{5}=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x=\dfrac{7}{10}\\\dfrac{1}{3}x=\dfrac{3}{10}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{21}{10}\\x=\dfrac{9}{10}\end{matrix}\right. \)
Vậy \(x=\dfrac{21}{10}\) hoặc \(x=\dfrac{9}{10}\)
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2\cdot x+2^2\right)\)
\(=x^3+2^3\)
\(=x^3+8\)
e) \(\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left(\dfrac{1}{25}x^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left[\left(\dfrac{1}{5}x\right)^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right]\)
\(=\left(\dfrac{1}{4}\right)^3-\left(\dfrac{1}{5}x\right)^3\)
\(=\dfrac{1}{64}-\dfrac{1}{125}x^3\)
\(=\dfrac{1}{64}-\dfrac{x^3}{125}\)
d: (x+2)(x^2-2x+4)
=(x+2)(x^2-x*2+2^2)
=x^3+8
e: (1/4-x/5)(1/16+x/20+x^2/25)
=(1/4-x/5)[(1/4)^2+1/4*x/5+(x/5)^2]
=1/64-x^3/125
a) \(\left(\dfrac{x^2}{2}+y^2\right)^2\)
\(=\left(\dfrac{1}{2}x^2+y^2\right)^2\)
\(=\left(\dfrac{1}{2}x^2\right)^2+2\cdot\dfrac{1}{2}x^2\cdot y^2+\left(y^2\right)^2\)
\(=\dfrac{1}{4}x^4+x^2y^2+y^4\)
b) \(\left(\dfrac{4}{5}x^2-\dfrac{2}{3}y\right)^2\)
\(=\left(\dfrac{4}{5}x^2\right)^2-2\cdot\dfrac{4}{5}x^2\cdot\dfrac{2}{3}y+\left(\dfrac{2}{3}y\right)^2\)
\(=\dfrac{16}{25}x^4-\dfrac{16}{15}x^2y+\dfrac{4}{9}y^2\)
c) \(\left(2x+\dfrac{1}{2}\right)\left(2x-\dfrac{1}{2}\right)\)
\(=\left(2x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=4x^2-\dfrac{1}{4}\)
a: (1/2x^2+y^2)^2
=(1/2x^2)^2+2*1/2x^2*y^2+y^4
=1/4x^4+x^2y^2+y^4
b: (4/5x^2-2/3y)^2
=(4/5x^2)^2-2*4/5x^2*2/3y+4/9y^2
=16/25x^4-16/15x^2y+4/9y^2
c: =(2x)^2-(1/2)^2
=4x^2-1/4
\(-\dfrac{2}{5}+\dfrac{5}{3}\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=-\dfrac{7}{6}\)
\(\Rightarrow\dfrac{5}{3}\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=-\dfrac{23}{30}\)
\(\Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{50}\)
\(\Rightarrow\dfrac{4}{15}x=\dfrac{49}{25}\Rightarrow x=\dfrac{147}{20}\)
Chúc bạn học tốt!!!
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
Bài 2:
\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\\\left(y+\dfrac{1}{2}\right)^2\ge0\\\left(z-\dfrac{1}{3}\right)^2\ge0\end{matrix}\right.\Rightarrow\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2\ge0\)Mà \(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-1}{2}\\z=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{4},y=\dfrac{-1}{2},z=\dfrac{1}{3}\)
1)
a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)
\(\Leftrightarrow2x=\dfrac{7}{2}-\dfrac{5}{2}\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
b) \(\left|5-\dfrac{1}{2}x\right|=\left|-\dfrac{1}{5}\right|\)
\(\Leftrightarrow\left|5-\dfrac{1}{2}x\right|=\dfrac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}5-\dfrac{1}{2}x=\dfrac{1}{5}\\5-\dfrac{1}{2}x=-\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{48}{5}\\x=\dfrac{52}{5}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{48}{5};x_2=\dfrac{52}{5}\)
1/2+1/3<x<=1+1/2+1/5
=>5/6<x<=1+7/10
=>5/6<x<17/10
mà x là số nguyên
nên x=1