K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABKC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AK

Do đó: ABKC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABKC là hình chữ nhật

a: Xét tứ giác ABEC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AE

Do đó: ABEC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABEC là hình chữ nhật

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!

 

23 tháng 11 2023

1: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

nên ABNC là hình bình hành

Hình bình hành ABNC có \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

2:

a: Xét ΔABC có

M là trung điểm của BC

MH//AB

Do đó: H là trung điểm của AC

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)

Xét tứ giác AMCE có

H là trung điểm chung của AC và ME

nên AMCE là hình bình hành

Hình bình hành AMCE có MA=MC

nên AMCE là hình thoi

=>\(C_{AMCE}=4\cdot AM=4\cdot2,5=10\left(cm\right)\)

3: Xét ΔNAB có

M,K lần lượt là trung điểm của NA,NB

=>MK là đường trung bình của ΔNAB

=>\(MK=\dfrac{AB}{2}\)

AMCE là hình thoi

=>AE//CM và AE=CM

AE//CM

\(M\in BC\)

Do đó: AE//BM

AE=CM

CM=BM

Do đó: AE=BM

Xét tứ giác ABME có

AE//MB

AE=MB

Do đó: ABME là hình bình hành

=>ME=AB

mà MK=1/2AB

nên \(\dfrac{ME}{MK}=1:\dfrac{1}{2}=2\)

=>ME=2MK

25 tháng 12 2021

a,Xét tứ giác ABDC có:

     D đối xứng với A qua M nên :

        DA=DC(1)

      M là trung điểm BC nên:

        BM=MC(2)

Từ (1)và (2) suy ra:

 tứ giác ABDC là hình chữ nhật(đpcm)

b, vì ABDC là hình chữ nhật nên:

AB=DC và AB//DC 

mà DC=FC và F trên tia DC 

=>AB=FC và AB//FC

 vậy tứ giác ABCF là hình bình hành(đpcm)