Tìm ba phân số tối giản biết tổng của chúng bằng \(12\dfrac{7}{24}\) ; các tử số của chúng tỉ lệ với 3;5;7 ; các mẫu của chúng tỉ lệ với 2;3;4?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 phân số đó là: a/b ; c/d và e/f
tử của chúng tỉ lệ thuận với 3;5;7
--> a/3 = c/5 = e/7 --> c = 5a/3 ; e = 7a/3
mẫu của chúng tỉ lệ thuận với: 2;3;4
--> b/2 = d/3 = f/4 --> d = 3b/2 ; f = 2b
Lại có: a/b + c/d + e/f = 295/24
--> a/b + (5a/3)/(3b/2) + (7a/3)/(2b) = 295/24
--> a/b + (10a)/(9b) + (7a)/(6b) = 295/24
--> (59a)/(18b) = 295/24
--> a/b = 15/4
a/b là phân số tối giản --> a = 15 ; b = 4
--> c = 25 ; d = 6 --> c/d = 25/6
--> e = 35 ; f = 8 --> e/f = 35/8
Gọi 3 phân số cần tìm là \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\)
Ta có \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=12\frac{7}{24}\)
=> \(\frac{ayz+bxz+cxy}{xyz}=\frac{295}{24}\)(1)
Lại có \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\\\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=k\\\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=t\end{cases}}\Rightarrow\hept{\begin{cases}a=3k\\b=5k\\c=7k\end{cases}}\text{ và }\hept{\begin{cases}x=2t\\y=3t\\z=4t\end{cases}}\)
Khi đó (1) <=> \(\frac{3k.3t.4t+5k.2t.4t+7k.2t.3t}{2t.3t.4t}=\frac{295}{24}\)
<=> \(\frac{36kt^2+40kt^2+42kt^2}{24t^3}=\frac{295}{24}\)
=> \(\frac{118kt^2}{24t^3}=\frac{295}{24}\)
=> \(\frac{k}{t}=\frac{5}{2}\)
=> k = 5/2t
Khi đó a = 3k <=> a = 15/2t
b = 5k <=> b = 25/2t
c = 7k <=> c= 35/2t
Khi đó \(\frac{a}{x}=\frac{\frac{15}{2}t}{2t}=\frac{15}{4}\)
\(\frac{b}{y}=\frac{\frac{25}{2}t}{3t}=\frac{25}{6}\)
\(\frac{c}{z}=\frac{\frac{35}{2}t}{4t}=\frac{35}{8}\)
Vậy 3 phân số tìm được là \(\frac{15}{4};\frac{25}{6};\frac{35}{8}\)
câu a: đề =\(\frac{3^3.0,7^5}{0,7^4.0,3^4}=\frac{0.7}{3}=\frac{7}{30}\)
câu c: đề= \(\frac{2^5.4^5.4^6}{4^{13}}-\frac{3^{33}.2^{30}}{3^{32}.2^{32}}=\frac{2^5}{4^2}-\frac{3}{2^2}=\frac{2^5}{2^4}-\frac{3}{4}=\frac{5}{4}\)
câu e: đề= \(8^{-1996}.2^{5991}=2^{-5998}.2^{5991}=2^3=8\)
bao h thầy cô chữa bài bạn trả lời mình xem câu e đúng hay sai nhé :P
Gọi 3 phân số tối giản cần tìm là a/b, c/d và e/f. Theo đầu bài ta có:
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=5\frac{25}{63}=\frac{340}{63}\) ( 1 )
Do a, c, e tỉ lệ nghịch với 20 ; 4 ; 5 nên \(a:c:e=1:5:4\Rightarrow a=\frac{c}{5}=\frac{e}{4}\Rightarrow\hept{\begin{cases}c=5a\\e=4a\end{cases}}\) ( 2 )
Do b, d, f tỉ lệ thuận với 1 ; 3 ; 7 nên \(b:d:f=1:3:7\Rightarrow b=\frac{d}{3}=\frac{f}{7}\Rightarrow\hept{\begin{cases}d=3b\\f=7b\end{cases}}\) ( 3 )
Thế ( 2 ), ( 3 ) vào 1, ta có:
\(\frac{a}{b}+\frac{5a}{3b}+\frac{4a}{7b}=\frac{340}{63}\)
\(\Rightarrow1\cdot\frac{a}{b}+\frac{5}{3}\cdot\frac{a}{b}+\frac{4}{7}\cdot\frac{a}{b}=\frac{340}{63}\)
\(\Rightarrow\frac{a}{b}\cdot\left(1+\frac{5}{3}+\frac{4}{7}\right)=\frac{340}{63}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{68}{21}=\frac{340}{63}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=\frac{340}{63}:\frac{68}{21}=\frac{5}{3}\\\frac{c}{d}=\frac{5a}{3b}=\frac{25}{9}\\\frac{e}{f}=\frac{4a}{7b}=\frac{20}{21}\end{cases}}\)