K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

Tham Khảo

𝑥=52𝑥=−3

31 tháng 8 2021

\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Rightarrow\left(2x-5\right)\left(-2x-7\right)=\left(2x-5\right)\left(2x+5\right)\)

\(\Rightarrow-2x-7=2x+5\)

\(\Rightarrow4x=-12\)

\(\Rightarrow x=-3\)

Ta có: \(\left(2x-5\right)\left(4x^2+10x+25\right)\left(2x+5\right)\left(4x^2-10x+25\right)-64x^6\)

\(=\left(8x^3-125\right)\left(8x^3+125\right)-64x^6\)

\(=64x^6-15625-64x^6\)

=-15625

12 tháng 7 2021

undefined

29 tháng 10 2021

g) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

  \(\Rightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

  \(\Rightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

  \(\Rightarrow-2\left(2x-5\right)=0\Rightarrow x=\dfrac{5}{2}\)

i) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

  \(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

  \(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

  \(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\Rightarrow x\left(x+3\right)\left(x-2\right)=0\)

  \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

1 tháng 12 2019

\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow-\left(2x-5\right)\left(2x+7\right)=\left(2x-5\right)\left(2x+5\right)\)

\(\Leftrightarrow-2x-7=2x+5\)

\(\Leftrightarrow-4x=12\Leftrightarrow x=-3\)

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right].\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\7x+23=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\frac{23}{7}\end{matrix}\right.\)

1 tháng 12 2019

Cảm ơn nhiều ạ :))

7 tháng 8 2021

1, \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[x+2-\left(x-1\right)\right]=0\)

\(\Leftrightarrow3\left(x-1\right)=0\Leftrightarrow x=1\)

2, \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x-2-3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\Leftrightarrow x=-\dfrac{5}{2};x=2\)

3, \(\left(5-2x\right)\left(2x+7\right)=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7+2x+5\right)=0\Leftrightarrow\left(4x+12\right)\left(5-2x\right)=0\Leftrightarrow x=-3;x=\dfrac{5}{2}\)

1) Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-x+1\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

2) Ta có: \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-3x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-5}{2}\end{matrix}\right.\)

20 tháng 7 2021

\(4x^2-3\left(2x-5\right)-25=0\Leftrightarrow4x^2-6x-10=0\)

\(\Leftrightarrow2\left(2x^2-3x-5\right)=0\Leftrightarrow2\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow x=-1;x=\dfrac{5}{2}\)

20 tháng 7 2021

4x2-3(2x-5)-25=0

⇒(2x)2-52-3(2x-5)=0

⇒(2x-5)(2x+5)-3(2x-5)=0

⇒(2x-5)(2x+2)=0

⇒hoặc 2x-5=0⇒x=2,5

hoặc 2x+2=0⇒x=-1

vậy x={2,5;-1}

11 tháng 10 2021

1: Ta có: \(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)

11 tháng 10 2021

undefined

18 tháng 8 2021

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)