K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Ta có:

\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}\)

\(7y=6z\Rightarrow\dfrac{y}{30}=\dfrac{z}{35}\)

\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}=\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=30\\z=35\end{matrix}\right.\)

Vậy...

10 tháng 11 2017

Ta có: \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\) (1)

\(7y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{7}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{x}{3}=\dfrac{y}{5};\dfrac{y}{6}=\dfrac{z}{7}\Leftrightarrow\dfrac{x}{18}=\dfrac{y}{30};\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)

\(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)\(4x+8y-9z=-3\)

Áp dụng tính chất dãu tỉ số bằng nhau ta có:

\(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)

\(\dfrac{4x}{72}=1\Rightarrow4x=72\Rightarrow x=\dfrac{72}{4}=18\)

\(\dfrac{8y}{240}=1\Rightarrow8y=240\Rightarrow y=\dfrac{240}{8}=30\)

\(\dfrac{9z}{315}=1\Rightarrow9z=315\Rightarrow z=\dfrac{315}{9}=35\)

Vậy x=18 ; y=30 ; z=35

3 tháng 11 2015

\(\frac{x}{y}=\frac{3}{5}\Leftrightarrow5x=3y\Leftrightarrow35x=21y\)

\(7y=6z\Leftrightarrow21y=18z\)

Suy ra \(35x=18z\)

\(4x+8y-9z=-3\)

\(40x+80y-90z=-30\)

\(5x+35x+80y-90z=-30\)

\(83y-72z=-30\)

\(83y-84y=-30\left(Vì6z=7y\Leftrightarrow-72z=-84y\right)\)

\(y=30\)

\(x=18\)

\(z=35\)

3 tháng 11 2015

Ta có: \(\frac{x}{3}=\frac{y}{5};\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{x}{18}=\frac{y}{30}=\frac{z}{35}=\frac{4x}{72}=\frac{8y}{240}=\frac{9z}{315}=\frac{-3}{-3}=1\)

\(\Rightarrow\frac{x}{18}=1\Rightarrow x=18;\frac{y}{30}=1\Rightarrow y=30;\frac{z}{35}=1\Rightarrow z=35\) 

NV
23 tháng 1

\(P=\left(\dfrac{x}{2}+\dfrac{9}{2x}\right)+\left(\dfrac{y}{8}+\dfrac{2}{y}\right)+\left(\dfrac{z}{4}+\dfrac{9}{z}\right)+\dfrac{1}{8}\left(4x+7z+6z\right)\)

\(P\ge2\sqrt{\dfrac{9x}{4x}}+2\sqrt{\dfrac{2y}{8y}}+2\sqrt{\dfrac{9z}{4z}}+\dfrac{1}{8}.76=\dfrac{33}{2}\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(3;4;6\right)\)

2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{4x+y-z}{4\cdot3+12-16}=\dfrac{8}{8}=1\)

Do đó: x=3; y=12; z=16

7 tháng 12 2021

undefined